Differentiate the functions with respect to x.
\(2\sqrt{cot\ (x^2)}\)
\(\frac{d}{dx}\)\([2\sqrt{cot\ (x^2)}]\) = 2.\(\frac {1}{2\sqrt {cot\ (x^2)}}\) . \(\frac{d}{dx}\)[cot(x2)]
= \(\sqrt {\frac {sin\ (x^2)}{cos\ (x^2)}}\) .- cosec2(x2) . \(\frac {d}{dx}\)(x2)
= -\(\sqrt {\frac {sin\ (x^2)}{cos\ (x^2)}}\) . \(\frac {1}{sin^2(x^2)}\) . (2x)
= \(\frac {-2x}{\sqrt {cos\ x^2}.\sqrt {sin\ x^2}.sin \ x^2}\)
=-\(\frac {-2\sqrt 2x}{\sqrt {cos\ x^2.sin\ x^2}.sin \ x^2}\)
=\(\frac {-2\sqrt 2x}{sin\ x^2.\sqrt {sin\ 2x^2}}\)
Let $\alpha,\beta\in\mathbb{R}$ be such that the function \[ f(x)= \begin{cases} 2\alpha(x^2-2)+2\beta x, & x<1 \\ (\alpha+3)x+(\alpha-\beta), & x\ge1 \end{cases} \] is differentiable at all $x\in\mathbb{R}$. Then $34(\alpha+\beta)$ is equal to}