Differentiate the functions with respect to x.
\(2\sqrt{cot\ (x^2)}\)
\(\frac{d}{dx}\)\([2\sqrt{cot\ (x^2)}]\) = 2.\(\frac {1}{2\sqrt {cot\ (x^2)}}\) . \(\frac{d}{dx}\)[cot(x2)]
= \(\sqrt {\frac {sin\ (x^2)}{cos\ (x^2)}}\) .- cosec2(x2) . \(\frac {d}{dx}\)(x2)
= -\(\sqrt {\frac {sin\ (x^2)}{cos\ (x^2)}}\) . \(\frac {1}{sin^2(x^2)}\) . (2x)
= \(\frac {-2x}{\sqrt {cos\ x^2}.\sqrt {sin\ x^2}.sin \ x^2}\)
=-\(\frac {-2\sqrt 2x}{\sqrt {cos\ x^2.sin\ x^2}.sin \ x^2}\)
=\(\frac {-2\sqrt 2x}{sin\ x^2.\sqrt {sin\ 2x^2}}\)
Match List-I with List-II
List-I | List-II |
---|---|
(A) \( f(x) = |x| \) | (I) Not differentiable at \( x = -2 \) only |
(B) \( f(x) = |x + 2| \) | (II) Not differentiable at \( x = 0 \) only |
(C) \( f(x) = |x^2 - 4| \) | (III) Not differentiable at \( x = 2 \) only |
(D) \( f(x) = |x - 2| \) | (IV) Not differentiable at \( x = 2, -2 \) only |
Choose the correct answer from the options given below:
Match List-I with List-II
List-I | List-II |
---|---|
(A) \( f(x) = |x| \) | (I) Not differentiable at \( x = -2 \) only |
(B) \( f(x) = |x + 2| \) | (II) Not differentiable at \( x = 0 \) only |
(C) \( f(x) = |x^2 - 4| \) | (III) Not differentiable at \( x = 2 \) only |
(D) \( f(x) = |x - 2| \) | (IV) Not differentiable at \( x = 2, -2 \) only |
Choose the correct answer from the options given below: