Let $\alpha,\beta\in\mathbb{R}$ be such that the function \[ f(x)= \begin{cases} 2\alpha(x^2-2)+2\beta x, & x<1 \\ (\alpha+3)x+(\alpha-\beta), & x\ge1 \end{cases} \] is differentiable at all $x\in\mathbb{R}$. Then $34(\alpha+\beta)$ is equal to}

A ladder of fixed length \( h \) is to be placed along the wall such that it is free to move along the height of the wall.
Based upon the above information, answer the following questions:
(iii) (b) If the foot of the ladder, whose length is 5 m, is being pulled towards the wall such that the rate of decrease of distance \( y \) is \( 2 \, \text{m/s} \), then at what rate is the height on the wall \( x \) increasing when the foot of the ladder is 3 m away from the wall?
Logarithmic differentiation is a method to find the derivatives of some complicated functions, using logarithms. There are cases in which differentiating the logarithm of a given function is simpler as compared to differentiating the function itself. By the proper usage of properties of logarithms and chain rule finding, the derivatives become easy. This concept is applicable to nearly all the non-zero functions which are differentiable in nature.
Therefore, in calculus, the differentiation of some complex functions is done by taking logarithms and then the logarithmic derivative is utilized to solve such a function.