Let
\[
u = \tan^{-1} \left( \frac{2x}{1 - x^2} \right), \quad v = \sin^{-1} \left( \frac{2x}{1 + x^2} \right).
\]
Notice that
\[
\tan^{-1} \left( \frac{2x}{1 - x^2} \right) = 2 \tan^{-1} x,
\]
since
\[
\tan(2\theta) = \frac{2 \tan \theta}{1 - \tan^2 \theta}.
\]
Also,
\[
\sin^{-1} \left( \frac{2x}{1 + x^2} \right) = 2 \sin^{-1} \left( \frac{x}{\sqrt{1 + x^2}} \right),
\]
but more simply,
\[
\sin^{-1} \left( \frac{2x}{1 + x^2} \right) = 2 \tan^{-1} x,
\]
because
\[
\sin(2 \theta) = \frac{2 \tan \theta}{1 + \tan^2 \theta},
\]
and \(\sin^{-1} \left( \frac{2x}{1 + x^2} \right) = 2 \tan^{-1} x\).
Therefore,
\[
u = 2 \tan^{-1} x, \quad v = 2 \tan^{-1} x.
\]
Hence,
\[
\frac{du}{dv} = \frac{d(2 \tan^{-1} x)}{d(2 \tan^{-1} x)} = 1.
\]
Final answer:
\[
\boxed{1}.
\]