Step 1: Use the derivative formula for inverse trigonometric functions.
The derivative of $\cos^{-1}(x)$ is given by:
\[
\frac{d}{dx} \cos^{-1}(x) = \frac{-1}{\sqrt{1 - x^2}}.
\]
Step 2: Apply this to $\cos^{-1(e^x)$.}
Let $y = \cos^{-1}(e^x)$, then using the chain rule:
\[
\frac{dy}{dx} = \frac{-1}{\sqrt{1 - (e^x)^2}} \cdot \frac{d}{dx}(e^x).
\]
The derivative of $e^x$ is $e^x$. Hence, the derivative becomes:
\[
\frac{dy}{dx} = \frac{-e^x}{\sqrt{1 - e^{2x}}}.
\]
Step 3: Conclusion.
The correct answer is (C) $\frac{-e^x}{\sqrt{1 - e^{-2x}}}$.