Place Pradeep at \((0,0)\) and Devanand at \((-50,0)\).
Velocities: Devanand \((3,0)\), Pradeep \((0,-4)\). Relative position of Devanand w.r.t. Pradeep after \(t\) hours: \[ \vec r(t) = (-50,0) + (3,0)t - (0,-4)t = (-50+3t,\,4t). \] Distance squared: \[ d^2(t) = (-50+3t)^2 + (4t)^2 = 2500 - 300t + 25t^2. \] This quadratic attains its minimum at \[ t = \frac{300}{2 \cdot 25} = 6 \text{ h}. \] Then \[ d^2(6) = 2500 - 1800 + 900 = 1600 \quad \Rightarrow \quad d_{\min} = 40 \ \text{km}. \]
Velocities: Devanand \((0,-3)\), Pradeep \((4,0)\). \[ \vec r(t) = (-50-4t,\,-3t), \quad d^2(t) = 25t^2 + 400t + 2500. \] The vertex occurs at \[ t = -\frac{400}{2 \cdot 25} = -8 < 0. \] Hence for \(t \ge 0\), \[ d_{\min} = d(0) = 50 \ \text{km}. \]
Velocities along the same line in opposite directions: \[ \vec r(t) = (-50 - 7t,\,0), \quad d(t) = |50 + 7t| \ge 50 \ \text{km}. \]
Only Scenario I yields minimum distance \(=40\) km.
\[ \boxed{\text{Scenario I only}} \]