Step 1: Volume of the cube Let the side of the cube be $a$. The volume of the cube is: \[ V_{\text{cube}} = a^3. \] Step 2: Volume of the sphere The sphere that fits exactly inside the cube will have a diameter equal to the side of the cube, $a$. The radius of the sphere is: \[ r = \frac{a}{2}. \] The volume of the sphere is: \[ V_{\text{sphere}} = \frac{4}{3} \pi r^3 = \frac{4}{3} \pi \left(\frac{a}{2}\right)^3. \] Simplify: \[ V_{\text{sphere}} = \frac{4}{3} \pi \cdot \frac{a^3}{8} = \frac{\pi a^3}{6}. \] Step 3: Find the ratio The ratio of the volume of the cube to the volume of the sphere is: \[ \text{Ratio} = \frac{V_{\text{cube}}}{V_{\text{sphere}}} = \frac{a^3}{\frac{\pi a^3}{6}} = \frac{6}{\pi}. \] Correct Answer: The ratio is $6 : \pi$.
From one face of a solid cube of side 14 cm, the largest possible cone is carved out. Find the volume and surface area of the remaining solid.
Use $\pi = \dfrac{22}{7}, \sqrt{5} = 2.2$
"जितेंद्र नार्गे जैसे गाइड के साथ किसी भी पर्यटन स्थल का भ्रमण अधिक आनंददायक और यादगार हो सकता है।" इस कथन के समर्थन में 'साना साना हाथ जोड़ि .......' पाठ के आधार पर तर्कसंगत उत्तर दीजिए।
आप अदिति / आदित्य हैं। आपकी दादीजी को खेलों में अत्यधिक रुचि है। ओलंपिक खेल-2024 में भारत के प्रदर्शन के बारे में जानकारी देते हुए लगभग 100 शब्दों में पत्र लिखिए।
There is a circular park of diameter 65 m as shown in the following figure, where AB is a diameter. An entry gate is to be constructed at a point P on the boundary of the park such that distance of P from A is 35 m more than the distance of P from B. Find distance of point P from A and B respectively.