Given:
\[
x(t) = (t^2 - 2t)u(t - 1)
\]
We use the time-shifting property of the Laplace Transform:
\[
\mathcal{L}\{f(t - a)u(t - a)\} = e^{-as}F(s)
\]
Let:
\[
f(t) = t^2 - 2t \Rightarrow f(t - 1) = (t - 1)^2 - 2(t - 1)
= t^2 - 2t + 1 - 2t + 2 = t^2 - 4t + 3
\]
We will take Laplace of \(x(t) = f(t - 1)u(t - 1)\)
\[
\Rightarrow \mathcal{L}\{x(t)\} = e^{-s} \cdot \mathcal{L}\{t^2 - 4t + 3\}
\]
Now compute Laplace of each term:
\[
\mathcal{L}\{t^2\} = \dfrac{2}{s^3}, \mathcal{L}\{t\} = \dfrac{1}{s^2}, \mathcal{L}\{1\} = \dfrac{1}{s}
\]
\[
\Rightarrow \mathcal{L}\{x(t)\} = e^{-s} \left(\dfrac{2}{s^3} - \dfrac{4}{s^2} + \dfrac{3}{s} \right)
= \dfrac{e^{-s}(2 - 4s + 3s^2)}{s^3}
= \dfrac{2e^{-s}(1 - s)}{s^3}
\]