Question:

Define the sequences \(\left\{a_n\right\}^{\infin}_{n=3}\) and \(\left\{b_n\right\}^{\infin}_{n=3}\) as
\(a_n=(\log n+\log\ \log n)^{\log n}\) and \(b_n=n^{(1+\frac{1}{\log n})}\).
Which one of the following is TRUE ?

Updated On: Oct 1, 2024
  • \(\sum\limits^{\infin}_{n=3}\frac{1}{a_n}\) is convergent but \(\sum\limits_{n=3}^{\infin}\frac{1}{b_n}\) is divergent
  • \(\sum\limits^{\infin}_{n=3}\frac{1}{a_n}\) is divergent but \(\sum\limits_{n=3}^{\infin}\frac{1}{b_n}\) is convergent
  • Both \(\sum\limits_{n=3}^{\infin}\frac{1}{a_n}\) and \(\sum\limits_{n=3}^{\infin}\frac{1}{b_n}\) are divergent
  • Both \(\sum\limits_{n=3}^{\infin}\frac{1}{a_n}\) and \(\sum\limits_{n=3}^{\infin}\frac{1}{b_n}\) are convergent
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is A

Solution and Explanation

The correct option is (A) : \(\sum\limits^{\infin}_{n=3}\frac{1}{a_n}\) is convergent but \(\sum\limits_{n=3}^{\infin}\frac{1}{b_n}\) is divergent.
Was this answer helpful?
0
0