- For \( a_n = (\log n + \log \log n)\log n \):
We simplify \( a_n \) as:
\[
a_n \approx (\log n) \log n = (\log n)^2 \quad \text{for large } n.
\]
Thus, the series \( \sum_{n=3}^{\infty} \frac{1}{a_n} \) behaves like the series \( \sum_{n=3}^{\infty} \frac{1}{(\log n)^2} \). Since \( \frac{1}{(\log n)^2} \) decays faster than \( \frac{1}{n} \), the series \( \sum_{n=3}^{\infty} \frac{1}{a_n} \) converges.
- For \( b_n = n^{(1 + \frac{1}{\log n})} \):
We analyze the behavior of \( b_n \):
\[
b_n = n^{1 + \frac{1}{\log n}} = n \cdot n^{\frac{1}{\log n}}.
\]
As \( n \) grows large, \( n^{\frac{1}{\log n}} \) approaches 1, so \( b_n \approx n \). Therefore, the series \( \sum_{n=3}^{\infty} \frac{1}{b_n} \) behaves like the harmonic series \( \sum_{n=3}^{\infty} \frac{1}{n} \), which is divergent.
Thus, the correct answer is (A): \( \sum_{n=3}^{\infty} \frac{1}{a_n} \) is convergent but \( \sum_{n=3}^{\infty} \frac{1}{b_n} \) is divergent.