We are asked to compute: \[ \frac{d}{dx} \left( \frac{1}{x} \frac{d^2}{dx^2} \left( \frac{1}{x^3} \right) \right) \] Step 1: Compute the second derivative of \( \frac{1}{x^3} \). We start with: \[ y = \frac{1}{x^3} = x^{-3} \] The first derivative of \( y \) is: \[ \frac{dy}{dx} = -3x^{-4} \] Now, the second derivative: \[ \frac{d^2y}{dx^2} = 12x^{-5} \] Step 2: Now, compute \( \frac{1}{x} \times \frac{d^2}{dx^2} \left( \frac{1}{x^3} \right) \): \[ \frac{1}{x} \times 12x^{-5} = 12x^{-6} \] Step 3: Finally, differentiate with respect to \( x \): \[ \frac{d}{dx} \left( 12x^{-6} \right) = -72x^{-7} \]
The correct option is (E) : \(-72x^{-7}\)
Let $ y(x) $ be the solution of the differential equation $$ x^2 \frac{dy}{dx} + xy = x^2 + y^2, \quad x > \frac{1}{e}, $$ satisfying $ y(1) = 0 $. Then the value of $ 2 \cdot \frac{(y(e))^2}{y(e^2)} $ is ________.