Assertion (A): The deflection in a galvanometer is directly proportional to the current passing through it.
Reason (R): The coil of a galvanometer is suspended in a uniform radial magnetic field.
Galvanometer:
A galvanometer is an instrument used to show the direction and strength of the current passing through it. In a galvanometer, a coil placed in a magnetic field experiences a torque and hence gets deflected when a current passes through it.
The name "galvanometer" is derived from the surname of Italian scientist Luigi Galvani, who in 1791 discovered that electric current makes a dead frog’s leg jerk.
A spring attached to the coil provides a counter torque. In equilibrium, the deflecting torque is balanced by the restoring torque of the spring, and we have the relation:
\[ NBAI = k\phi \]
Where:
As the current \( I_g \) that produces full-scale deflection in the galvanometer is very small, the galvanometer alone cannot be used to measure current in electric circuits.
To convert a galvanometer into an ammeter (to measure larger currents), a small resistance called a shunt is connected in parallel to the galvanometer.
To convert it into a voltmeter (to measure potential difference), a high resistance is connected in series with the galvanometer.
A sphere of radius R is cut from a larger solid sphere of radius 2R as shown in the figure. The ratio of the moment of inertia of the smaller sphere to that of the rest part of the sphere about the Y-axis is :
The current passing through the battery in the given circuit, is:
A bob of heavy mass \(m\) is suspended by a light string of length \(l\). The bob is given a horizontal velocity \(v_0\) as shown in figure. If the string gets slack at some point P making an angle \( \theta \) from the horizontal, the ratio of the speed \(v\) of the bob at point P to its initial speed \(v_0\) is :