Step 1: Recall the definition of API gravity.
API gravity (in degrees) is defined by
\[
{}^\circ\!API \;=\; \frac{141.5}{\text{SG}_{60^\circ\mathrm{F}}} - 131.5,
\]
where \(\text{SG}_{60^\circ\mathrm{F}}\) is the specific gravity at \(60^\circ\mathrm{F}\).
Step 2: Compare with pure water.
Pure water has \(\text{SG}=1\). Substituting,
\[
{}^\circ\!API_{\text{water}}=\frac{141.5}{1}-131.5 = 10^\circ.
\]
Step 3: Heavier (denser) than water \(\Rightarrow \text{SG} > 1\).
The function \(\dfrac{141.5}{\text{SG}} - 131.5\) decreases as SG increases.
Hence, for any crude with \(\text{SG} > 1\),
\[
{}^\circ\!API \;=\; \frac{141.5}{\text{SG}} - 131.5 \;<\; \frac{141.5}{1}-131.5 \;=\; 10^\circ.
\]
(For example, \(\text{SG}=1.05 \Rightarrow {}^\circ\!API \approx 141.5/1.05 - 131.5 \approx 3.2^\circ < 10^\circ\).)
Final Answer:
\[
\boxed{\text{Less than } 10^\circ}
\]