Question:

Find the integrals of the function: \(\frac{cos2 x-cos2 α}{cos x - cos α}\)

Updated On: Oct 11, 2023
Hide Solution
collegedunia
Verified By Collegedunia

Solution and Explanation

\(\frac{cos2 x-cos2 α}{cos x - cos α}\)\(=\frac{ -2 sin (\frac{2x+2α}{2})   sin (\frac{2x-2α}{2})   }{-2sin   (\frac{x+α}{2})   sin  (\frac{x- α}{2})     }\)            [cos C - cos D = -2sin \(\frac{C+D}{2}\) sin \(\frac{C-D}{2}\)]

\(=\frac{sin(x+α)sin(x-α) }{sin(\frac{x+α}{2}  )sin(\frac{x-α}{2}  )}\)

\(=\frac{[2sin(\frac{x+  α}{2})  )cos(\frac{x+  α}{2})  )][2sin(\frac{x-  α}{2})  )cos(\frac{x-  α}{2})  )]}{sin(\frac{x+  α}{2})  )sin(\frac{x-  α}{2})  )}\)

\(=4 cos (\frac{x+  α}{2})  cos(\frac{x-  α}{2})  \)

\(=2[cos(\frac{x+  α}{2}  +\frac{x-  α}{2})  +cos \frac{x+  α}{2}   - \frac{x-  α}{2}  ]\)

\(=2[cos(x) +cos α]\)

\(=2 cos x+ 2cos α\)

∴ ∫\(\frac{cos2 x-cos2 α}{cos x - cos α}\) = \(∫2 cos x+ 2cos α\)

\(=2[sin x+ x cos α]+C\)

Was this answer helpful?
0
0

Concepts Used:

Methods of Integration

Given below is the list of the different methods of integration that are useful in simplifying integration problems:

Integration by Parts:

 If f(x) and g(x) are two functions and their product is to be integrated, then the formula to integrate f(x).g(x) using by parts method is:

∫f(x).g(x) dx = f(x) ∫g(x) dx − ∫(f′(x) [ ∫g(x) dx)]dx + C

Here f(x) is the first function and g(x) is the second function.

Method of Integration Using Partial Fractions:

The formula to integrate rational functions of the form f(x)/g(x) is:

∫[f(x)/g(x)]dx = ∫[p(x)/q(x)]dx + ∫[r(x)/s(x)]dx

where

f(x)/g(x) = p(x)/q(x) + r(x)/s(x) and

g(x) = q(x).s(x)

Integration by Substitution Method

Hence the formula for integration using the substitution method becomes:

∫g(f(x)) dx = ∫g(u)/h(u) du

Integration by Decomposition

Reverse Chain Rule

This method of integration is used when the integration is of the form ∫g'(f(x)) f'(x) dx. In this case, the integral is given by,

∫g'(f(x)) f'(x) dx = g(f(x)) + C

Integration Using Trigonometric Identities