>
Exams
>
Mathematics
>
Trigonometry
>
cos 1 left frac 1 2 right 2 sin 1 left frac 1 2 r
Question:
\(\cos^{-1}\left(-\frac{1}{2}\right)-2\sin^{-1}\left(\frac{1}{2}\right)+3\cos^{-1}\left(-\frac{1}{\sqrt{2}}\right)-4\tan^{-1}(-1)\) equals
Show Hint
Always use principal values: \(\cos^{-1}(x)\in[0,\pi]\), \(\sin^{-1}(x)\in[-\pi/2,\pi/2]\), \(\tan^{-1}(x)\in[-\pi/2,\pi/2]\).
VITEEE - 2009
VITEEE
Updated On:
Jan 3, 2026
\(\frac{19\pi}{12}\)
\(\frac{35\pi}{12}\)
\(\frac{47\pi}{12}\)
\(\frac{43\pi}{12}\)
Hide Solution
Verified By Collegedunia
The Correct Option is
D
Solution and Explanation
Step 1: Evaluate each inverse trig value.
\[ \cos^{-1}\left(-\frac{1}{2}\right)=\frac{2\pi}{3} \]
\[ \sin^{-1}\left(\frac{1}{2}\right)=\frac{\pi}{6} \]
\[ \cos^{-1}\left(-\frac{1}{\sqrt{2}}\right)=\frac{3\pi}{4} \]
\[ \tan^{-1}(-1)=-\frac{\pi}{4} \]
Step 2: Substitute in expression.
\[ \frac{2\pi}{3}-2\left(\frac{\pi}{6}\right)+3\left(\frac{3\pi}{4}\right)-4\left(-\frac{\pi}{4}\right) \]
Step 3: Simplify each part.
\[ \frac{2\pi}{3}-\frac{\pi}{3}=\frac{\pi}{3} \]
\[ 3\cdot\frac{3\pi}{4}=\frac{9\pi}{4} \]
\[ -4\left(-\frac{\pi}{4}\right)=+\pi \]
So total:
\[ \frac{\pi}{3}+\frac{9\pi}{4}+\pi \]
Step 4: Take LCM 12.
\[ \frac{\pi}{3}=\frac{4\pi}{12},\quad \frac{9\pi}{4}=\frac{27\pi}{12},\quad \pi=\frac{12\pi}{12} \]
\[ \Rightarrow \frac{4\pi+27\pi+12\pi}{12}=\frac{43\pi}{12} \]
Final Answer:
\[ \boxed{\frac{43\pi}{12}} \]
Download Solution in PDF
Was this answer helpful?
0
0
Top Questions on Trigonometry
The number of 4-letter words, with or without meaning, which can be formed using the letters PQRPRSTUVP, is :
JEE Main - 2026
Mathematics
Trigonometry
View Solution
Let \( y = y(x) \) be the solution of the differential equation \( x^2 dy + (4x^2 y + 2\sin x)dx = 0 \), \( x>0 \), \( y\left(\frac{\pi}{2}\right) = 0 \). Then \( \pi^4 y\left(\frac{\pi}{3}\right) \) is equal to :
JEE Main - 2026
Mathematics
Trigonometry
View Solution
If \[ k=\tan\!\left(\frac{\pi}{4}+\frac{1}{2}\cos^{-1}\!\left(\frac{2}{3}\right)\right) +\tan\!\left(\frac{1}{2}\sin^{-1}\!\left(\frac{2}{3}\right)\right), \] then the number of solutions of the equation \[ \sin^{-1}(kx-1)=\sin^{-1}x-\cos^{-1}x \] is:
JEE Main - 2026
Mathematics
Trigonometry
View Solution
If \[ \frac{\tan(A-B)}{\tan A}+\frac{\sin^2 C}{\sin^2 A}=1, \quad A,B,C\in\left(0,\frac{\pi}{2}\right), \] then:
JEE Main - 2026
Mathematics
Trigonometry
View Solution
Let \( \dfrac{\pi}{2} < \theta < \pi \) and \( \cot \theta = -\dfrac{1}{2\sqrt{2}} \). Then the value of \[ \sin\!\left(\frac{15\theta}{2}\right)(\cos 8\theta + \sin 8\theta) + \cos\!\left(\frac{15\theta}{2}\right)(\cos 8\theta - \sin 8\theta) \] is equal to
JEE Main - 2026
Mathematics
Trigonometry
View Solution
View More Questions
Questions Asked in VITEEE exam
Find the value of \( x \) in the following equation:
\[ \frac{2}{x} + \frac{3}{x + 1} = 1 \]
VITEEE - 2025
Algebra
View Solution
How many numbers between 0 and 9 look the same when observed in a mirror?
VITEEE - 2025
Odd one Out
View Solution
In a code language, 'TIGER' is written as 'JUISF'. How will 'EQUAL' be written in that language?
VITEEE - 2025
Odd one Out
View Solution
In a code language, 'TIGER' is written as 'JUISF'. How will 'EQUAL' be written in that language?
VITEEE - 2025
Data Interpretation
View Solution
TUV : VYB :: PRA : ?
VITEEE - 2025
Odd one Out
View Solution
View More Questions