\(\dfrac{13}{20}\)
\(\dfrac{1}{20}\)
\(\dfrac{1}{4}\)
\(\dfrac{1}{5}\)
\(\dfrac{3}{5}\)
Given two independent events E and F with probabilities:
\[ P(E) = \frac{1}{4}, \quad P(E \cup F) = \frac{2}{5}, \quad P(F) = a \]
Step 1: Use the formula for probability of union of two independent events:
\[ P(E \cup F) = P(E) + P(F) - P(E)P(F) \] \[ \frac{2}{5} = \frac{1}{4} + a - \frac{1}{4}a \]
Step 2: Solve for \( a \):
\[ \frac{2}{5} - \frac{1}{4} = a - \frac{1}{4}a \] \[ \frac{8}{20} - \frac{5}{20} = \frac{3}{4}a \] \[ \frac{3}{20} = \frac{3}{4}a \] \[ a = \frac{3}{20} \times \frac{4}{3} = \frac{12}{60} = \frac{1}{5} \]
The correct value of \( a \) is \( \frac{1}{5} \).
Given
\(P(E)=\dfrac{1}{4},P(E∪F)=\dfrac{2}{5}\)
We know that,
\(P(E ∪ F) = P(E) + P(F) - P(E ∩ F)\)
\(P(E ∩ F) = \dfrac{1}{4} + a - \dfrac{2}{5}\)---------(1)
Now, \(P(E ∩ F) = P(E) × P(F)\)
\(P(E ∩ F) = (1/4) × a\)----------(2)
Now, we can equate (1) and (2) to get the value of \('a’\)
\(\dfrac{1}{4} × a = \dfrac{1}{4} + a - \dfrac{2}{5}\)
\(⇒\dfrac{1}{4} × a -a = \dfrac{-3}{20}\)
\(⇒\dfrac{-3a}{4}=\dfrac{-3}{20}\)
\(⇒a=\dfrac{1}{5}\)