Step 1: Reversible isothermal expansion work
For an isothermal reversible expansion,
\[
w_{\text{rev}} = nRT \ln \left( \frac{V_f}{V_i} \right).
\]
Here, the gas volume doubles \(⇒ V_f = 2V_i\).
So,
\[
w_{\text{rev}} = nRT \ln 2.
\]
Step 2: Irreversible isothermal expansion work
For irreversible work, external pressure is equal to the final pressure of the gas:
\[
P_{\text{ext}} = P_f.
\]
Since \( P V = nRT \), the final pressure is
\[
P_f = \frac{nRT}{V_f} = \frac{nRT}{2V_i}.
\]
Now the work in irreversible expansion is
\[
w_{\text{irrev}} = P_{\text{ext}} (V_f - V_i).
\]
Substitute values:
\[
w_{\text{irrev}} = \frac{nRT}{2V_i} (2V_i - V_i).
\]
\[
w_{\text{irrev}} = \frac{nRT}{2}.
\]
Step 3: Ratio of works
\[
\frac{w_{\text{rev}}}{w_{\text{irrev}}} = \frac{nRT \ln 2}{\tfrac{nRT}{2}} = 2 \ln 2.
\]
\fbox{\(\dfrac{w_{\text{rev}}}{w_{\text{irrev}}} = 2 \ln 2\)}