In the (4 times 4) array shown below, each cell of the first three rows has either a cross (X) or a number. The number in a cell represents the count of the immediate neighboring cells (left, right, top, bottom, diagonals) NOT having a cross (X). Given that the last row has no crosses (X), the sum of the four numbers to be filled in the last row is:
Let \( \{(a, b) : a, b \in {R, a<b \} }\) be a basis for a topology \( \tau \) on \( {R} \). Which of the following is/are correct?
Let \( p_1<p_2 \) be the two fixed points of the function \( g(x) = e^x - 2 \), where \( x \in {R} \). For \( x_0 \in {R} \), let the sequence \( (x_n)_{n \geq 1} \) be generated by the fixed-point iteration \[ x_n = g(x_{n-1}), \quad n \geq 1. \] Which one of the following is/are correct?
For an integer \( n \), let \( f_n(x) = xe^{-nx }\), where \( x \in [0, 1] \). Let \( S := \{f_n : n \geq 1\} \). Consider the metric space \( (C([0, 1]), d) \), where \[ d(f, g) = \sup_{x \in [0, 1]} |f(x) - g(x)|, \quad f, g \in C([0, 1]). \] Which of the following statement(s) is/are true?}