Step 1: Finding the vertices of \( BCD \)
The lines given are: 1. \( y = x \) 2. \( x + y = 6 \) 3. \( y = 1 \) Solving for intersections: - Intersection of \( y = x \) and \( x + y = 6 \): \[ x + x = 6 \Rightarrow 2x = 6 \Rightarrow x = 3, y = 3. \] So, \( B(3,3,0) \). - Intersection of \( x + y = 6 \) and \( y = 1 \): \[ x + 1 = 6 \Rightarrow x = 5, y = 1. \] So, \( C(5,1,0) \). - Intersection of \( y = x \) and \( y = 1 \): \[ x = 1, y = 1. \] So, \( D(1,1,0) \).
Step 2: Finding the centroid of tetrahedron
The centroid \( G \) of a tetrahedron with vertices \( (x_1, y_1, z_1) \), \( (x_2, y_2, z_2) \), \( (x_3, y_3, z_3) \), and \( (x_4, y_4, z_4) \) is given by: \[ G = \left( \frac{x_1 + x_2 + x_3 + x_4}{4}, \frac{y_1 + y_2 + y_3 + y_4}{4}, \frac{z_1 + z_2 + z_3 + z_4}{4} \right). \] Substituting \( A(3,2,4) \), \( B(3,3,0) \), \( C(5,1,0) \), \( D(1,1,0) \): \[ G_x = \frac{3 + 3 + 5 + 1}{4} = \frac{12}{4} = 3. \] \[ G_y = \frac{2 + 3 + 1 + 1}{4} = \frac{7}{4}. \] \[ G_z = \frac{4 + 0 + 0 + 0}{4} = 1. \] Thus, the centroid is: \[ \left( 3, \frac{7}{4}, 1 \right). \]
If the pair of lines represented by $$ 3x^2 - 5xy + P y^2 = 0 $$ and $$ 6x^2 - xy - 5y^2 = 0 $$ have one line in common, then the sum of all possible values of \( P \) is: