Step 1: Dynamics of the system.
The rate of change of hold-up \( V \) in the surge drum is:
\[
\frac{dV}{dt} = F_{\text{in}} - F_{\text{out}},
\]
where:
\[
F_{\text{out}} = K_c (V - \bar{V}) + F_{\text{out}}.
\]
At \( t = 0 \), \( F_{\text{in}} \) increases from \( 1 \, \text{m}^3/\text{h} \) to \( 2 \, \text{m}^3/\text{h} \), causing a change in \( V \).
Step 2: Steady-state condition.
Initially, \( F_{\text{in}} = F_{\text{out}} = 1 \, \text{m}^3/\text{h} \), and \( V = \bar{V} = 5 \, \text{m}^3 \).
Step 3: Determine \( K_c^{\text{min}} \).
To prevent \( V \) from exceeding \( V_{\text{high}} = 0.8 V_{\text{full}} \), the proportional controller gain \( K_c \) must be sufficient to counteract the inflow increase. The maximum deviation \( \Delta V \) is given by:
\[
\Delta V = \frac{\Delta F_{\text{in}}}{K_c},
\]
where \( \Delta F_{\text{in}} = F_{\text{in,new}} - F_{\text{in,old}} = 2 - 1 = 1 \, \text{m}^3/\text{h} \).
Substitute \( \Delta V \leq V_{\text{high}} - \bar{V} = 0.8 V_{\text{full}} - 0.5 V_{\text{full}} = 0.3 V_{\text{full}} \):
\[
\frac{1}{K_c} \leq 0.3 V_{\text{full}}.
\]
Rearrange for \( K_c \):
\[
K_c \geq \frac{1}{0.3 V_{\text{full}}}.
\]
With \( V_{\text{full}} = 10 \, \text{m}^3 \):
\[
K_c \geq \frac{1}{0.3 \cdot 10} = 0.33 \, \text{h}^{-1}.
\]
Step 4: Conclusion.
The minimum controller gain \( K_c^{\text{min}} \) is \( 0.33 \, \text{h}^{-1} \).