
Step 1: Recall the definition of a matched filter's impulse response.
The impulse response \(h(t)\) of a filter matched to a signal \(x(t)\), non-zero over \([0, T]\), is: \[ h(t) = x(T - t) \] Here, \(T = 4\) s. So: \[ h(t) = x(4 - t) \]
Step 2: Determine the corresponding interval in \(x(t)\).
We need the slope of \(h(t)\) in \(3 < t < 4\). Let \(\tau = 4 - t\). Then: \[ t = 3 \Rightarrow \tau = 1, \quad t = 4 \Rightarrow \tau = 0 \] So the interval \(3 < t < 4\) for \(h(t)\) corresponds to \(0 < \tau < 1\) for \(x(\tau)\).
Step 3: Slope of \(x(t)\) in the interval \(0 < t < 1\).
From the signal graph, \(x(t)\) rises from 0 to 1 in this interval. Therefore: \[ \text{Slope of } x(t) = \frac{1 - 0}{1 - 0} = 1 \]
Step 4: Relate the slope of \(h(t)\) to \(x(t)\).
Using the chain rule: \[ h(t) = x(4 - t) \Rightarrow \frac{d}{dt} h(t) = x'(4 - t) \cdot (-1) \] Thus: \[ m_h(t) = - m_x(4 - t) \] For \(t \in (3, 4)\), \(m_x(4 - t) = m_x(\tau) = 1\). Therefore: \[ m_h = -1 \]
Answer: The slope of \(h(t)\) in the interval \(3 < t < 4\) is \(-1\), which corresponds to option (D).
Match List-I with List-II:
| List-I (Modulation Schemes) | List-II (Wave Expressions) | 
|---|---|
| (A) Amplitude Modulation | (I) \( x(t) = A\cos(\omega_c t + k m(t)) \) | 
| (B) Phase Modulation | (II) \( x(t) = A\cos(\omega_c t + k \int m(t)dt) \) | 
| (C) Frequency Modulation | (III) \( x(t) = A + m(t)\cos(\omega_c t) \) | 
| (D) DSB-SC Modulation | (IV) \( x(t) = m(t)\cos(\omega_c t) \) | 
Choose the correct answer:
