Step 1: The given orthonormal basis set is:
\[
\left( \frac{\sqrt{3}}{2}, \frac{\sqrt{5}}{2} x, \frac{1}{2} \sqrt{\frac{21}{N}} (5x^2 - 3) \right).
\]
For the functions to be orthonormal, the third function needs to be normalized. We focus on the third function:
\[
f_3(x) = \frac{1}{2} \sqrt{\frac{21}{N}} (5x^2 - 3).
\]
To normalize this function, we compute the following integral:
\[
\int_{-1}^{1} \left( \frac{1}{2} \sqrt{\frac{21}{N}} (5x^2 - 3) \right)^2 dx = 1.
\]
Step 2: Expand the integrand:
\[
\left( \frac{1}{2} \sqrt{\frac{21}{N}} (5x^2 - 3) \right)^2 = \frac{21}{4N} (5x^2 - 3)^2.
\]
Now expand \( (5x^2 - 3)^2 \):
\[
(5x^2 - 3)^2 = 25x^4 - 30x^2 + 9.
\]
So the integral becomes:
\[
\frac{21}{4N} \int_{-1}^{1} (25x^4 - 30x^2 + 9) \, dx.
\]
Step 3: Compute the individual integrals:
\[
\int_{-1}^{1} x^4 \, dx = \frac{2}{5}, \quad \int_{-1}^{1} x^2 \, dx = \frac{2}{3}, \quad \int_{-1}^{1} dx = 2.
\]
Substitute these values into the integral:
\[
\int_{-1}^{1} (25x^4 - 30x^2 + 9) \, dx = 25 \times \frac{2}{5} - 30 \times \frac{2}{3} + 9 \times 2 = 10 - 20 + 18 = 8.
\]
Step 4: Now, substitute this value into the normalization equation:
\[
\frac{21}{4N} \times 8 = 1 \quad \Rightarrow \quad \frac{168}{4N} = 1 \quad \Rightarrow \quad 42 = N.
\]
Thus, the value of \( N \) is \( \boxed{3} \).