Consider the line integral \( \int_C \mathbf{F}(\mathbf{r}) \cdot d\mathbf{r \), with \( \mathbf{F}(\mathbf{r}) = x \mathbf{i} + y \mathbf{j} + z \mathbf{k} \), where \( \mathbf{i}, \mathbf{j}, \mathbf{k} \) are unit vectors in the \( (x, y, z) \) Cartesian coordinate system. The path \( C \) is given by \( \mathbf{r}(t) = \cos(t) \mathbf{i} + \sin(t) \mathbf{j} + t \mathbf{k} \), where \( 0 \leq t \leq \pi \). The value of the integral, rounded off to 2 decimal places, is:}