Given:
\[
f(x, y, z) = x^4 + 2y^3 + z^2, \quad \vec{a} = \hat{i} + \hat{j}.
\]
Gradient of the function \( f \):
\[
\nabla f = \frac{\partial f}{\partial x} \hat{i} + \frac{\partial f}{\partial y} \hat{j} + \frac{\partial f}{\partial z} \hat{k}.
\]
\[
\nabla f = 4x^3 \hat{i} + 6y^2 \hat{j} + 2z \hat{k}.
\]
At point \( (-1, 1, -1) \):
\[
\nabla f|_{(-1,1,-1)} = -4\hat{i} + 6\hat{j} - 2\hat{k}.
\]
Unit normal vector:
\[
\hat{a} = \frac{\vec{a}}{|\vec{a}|}.
\]
Given \( \vec{a} = \hat{i} + \hat{j} \):
\[
|\vec{a}| = \sqrt{1^2 + 1^2} = \sqrt{2}.
\]
\[
\hat{a} = \frac{\hat{i} + \hat{j}}{\sqrt{2}}.
\]
Directional derivative of \( f \) along \( \vec{a} \):
\[
DD = \nabla f \cdot \hat{a}.
\]
\[
DD = (-4\hat{i} + 6\hat{j} - 2\hat{k}) \cdot \left(\frac{\hat{i} + \hat{j}}{\sqrt{2}}\right).
\]
Simplify:
\[
DD = \frac{-4}{\sqrt{2}} + \frac{6}{\sqrt{2}}.
\]
\[
DD = \frac{-4 + 6}{\sqrt{2}}.
\]
\[
DD = \frac{2}{\sqrt{2}} = \sqrt{2} \approx 1.414.
\]
Conclusion:
The directional derivative of the function at the point \( P(-1, 1, -1) \) along \( \hat{i} + \hat{j} \) is \( 1.41 \).