Step 1: Understanding the given congruences
We have the system of congruences:
\[
x \equiv 2 \pmod{3}
\]
\[
x \equiv 3 \pmod{5}
\]
\[
x \equiv 2 \pmod{7}
\]
Step 2: Applying the Chinese Remainder Theorem (CRT)
Define \( x = M_i \cdot y_i \) where \( M = 3 \times 5 \times 7 = 105 \).
Computing individual \( M_i \):
\[
M_1 = \frac{105}{3} = 35, \quad M_2 = \frac{105}{5} = 21, \quad M_3 = \frac{105}{7} = 15.
\]
Solving for the multiplicative inverses:
\[
y_1 \equiv 35^{-1} \pmod{3} = 2, \quad y_2 \equiv 21^{-1} \pmod{5} = 1, \quad y_3 \equiv 15^{-1} \pmod{7} = 1.
\]
Now, computing:
\[
x = (2 \times 35 \times 2) + (3 \times 21 \times 1) + (2 \times 15 \times 1) \pmod{105}
\]
\[
x = (140 + 63 + 30) \pmod{105}
\]
\[
x = 233 \pmod{105} = 23.
\]