Consider the following statements:
Statement 1: The new classical policy ineffectiveness proposition asserts that, systematic monetary policy and fiscal policy actions that change aggregate demand will not affect output and employment even in short run.
Statement 2: According to Real Business Cycle (RBC) model, the aggregate economic variables are the outcomes of the decisions made by many individual agents acting to maximize their utility subject to production possibilities and resource constraints.
Step 1: Understand the policy ineffectiveness proposition.
According to new classical economists (like Robert Lucas), rational expectations mean that systematic policy cannot affect real output in the short run — agents adjust their expectations accordingly.
Step 2: Understand Real Business Cycle (RBC) model.
RBC theory considers real (not monetary) shocks as primary drivers of business cycles and models the economy as a collection of utility-maximizing agents facing constraints.
For a closed economy with no government expenditure and taxes, the aggregate consumption function (\(C\)) is given by: \[ C = 100 + 0.75 \, Y_d \] where \( Y_d \) is the disposable income. If the total investment is 80, the equilibrium output is ____________ (in integer).
Two players \( A \) and \( B \) are playing a game. Player \( A \) has two available actions \( a_1 \) and \( a_2 \). Player \( B \) has two available actions \( b_1 \) and \( b_2 \). The payoff matrix arising from their actions is presented below:
Let \( p \) be the probability that player \( A \) plays action \( a_1 \) in the mixed strategy Nash equilibrium of the game.
Then the value of p is (round off to one decimal place).
The installation cost (IC) of a solar power plant is INR 89,000. The plant shall be operational for 5 years. The recurring costs for maintenance of the solar plant per year is INR 5,000 but the benefits it creates including reduction in emissions amounts to INR 25,000 per year. These are the only costs and benefits associated with this project. The social discount rate (r) considered is 4% per year. The yearwise information is presented below.
A coin has a true probability \( \mu \) of turning up Heads. This coin is tossed 100 times and shows up Heads 60 times. The following hypothesis is tested:
\[ H_0: \mu = 0.5 \quad ({Null Hypothesis}), \quad H_1: \mu>0.5 \quad ({Alternative Hypothesis}) \]
Using the Central Limit Theorem, the \( p \)-value of the above test is ________ (round off to three decimal places).
Hint: If Z is a random variable that follows a standard normal distribution, then P (Z ≤ 2) = 0.977.