We are given the equilibrium concentrations of N2, O2, and NO, and asked to find the degree of dissociation (α) of NO.
The dissociation of NO follows the reaction:
2NO(g) ⇌ N2(g) + O2(g)
Since the concentration of N2 is equal to α, we can set up the following equation:
α = 3.0 × 10−3 M
Similarly, the concentration of O2 is also equal to α, which gives:
α = 4.2 × 10−3 M
Using the initial concentration of NO (0.1 M), we can solve for α:
α = 3.0 × 10−3 / 0.1 = 0.03
The degree of dissociation is approximately 0.717.
x mg of Mg(OH)$_2$ (molar mass = 58) is required to be dissolved in 1.0 L of water to produce a pH of 10.0 at 298 K. The value of x is ____ mg. (Nearest integer) (Given: Mg(OH)$_2$ is assumed to dissociate completely in H$_2$O)
The vapour pressure of H\(_2\)O at 323K is 95 mm of Hg. 176g of sucrose (Molar mass = 342 gmol\(^{-1}\)) is added to 900g of H\(_2\)O at 323K.
The vapour pressure of solution is about
List I | List II | ||
---|---|---|---|
A | Mesozoic Era | I | Lower invertebrates |
B | Proterozoic Era | II | Fish & Amphibia |
C | Cenozoic Era | III | Birds & Reptiles |
D | Paleozoic Era | IV | Mammals |