Step 1: Use the stoichiometric relationship:
Initial concentration of NO: $[NO] = 0.1 \, \text{mol/L}$
Change in concentration: $\Delta[NO] = 2\alpha[NO]$
Final concentration: $[NO]_f = 0.1 - 2\alpha$
Step 2: Calculate $\alpha$ at equilibrium: Using equilibrium concentrations:
$K_c = \frac{[N_2][O_2]}{[NO]^2}$, $K_c = \frac{\alpha^2}{(1 - 2\alpha)^2}$
Simplifying for $\alpha$, we find:
$\alpha = 0.717$
Predict expression from α in terms of \(K_{eq}\) and concentration C :
\(A_2 B_3(aq) \leftrightharpoons 2{A_3} (aq)+3B_{{2-}}(aq)\)
List I | List II | ||
---|---|---|---|
A | Mesozoic Era | I | Lower invertebrates |
B | Proterozoic Era | II | Fish & Amphibia |
C | Cenozoic Era | III | Birds & Reptiles |
D | Paleozoic Era | IV | Mammals |