The relationship between Gibbs free energy change (\( \Delta G^\ominus \)), enthalpy change (\( \Delta H^\ominus \)), and entropy change (\( \Delta S^\ominus \)) at a constant temperature T is given by the Gibbs-Helmholtz equation:
\[ \Delta G^\ominus = \Delta H^\ominus - T\Delta S^\ominus \]
Given:
\( \Delta H^\ominus = -24 \) kJ \( = -24000 \) J.
\( \Delta G^\ominus = -9 \) kJ \( = -9000 \) J.
Temperature \( T = 25 \, ^\circ\text{C} = 25 + 273.
15 = 298.
15 \) K.
(Using 298 K for simplicity is common if precision matches options).
Let's use T = 298 K.
We need to find \( \Delta S^\ominus \) in JK\(^{-1}\).
Rearrange the equation to solve for \( \Delta S^\ominus \):
\[ T\Delta S^\ominus = \Delta H^\ominus - \Delta G^\ominus \]
\[ \Delta S^\ominus = \frac{\Delta H^\ominus - \Delta G^\ominus}{T} \]
Substitute the values:
\[ \Delta S^\ominus = \frac{(-24000 \, \text{J}) - (-9000 \, \text{J})}{298 \, \text{K}} \]
\[ \Delta S^\ominus = \frac{-24000 + 9000}{298} \, \text{J K}^{-1} \]
\[ \Delta S^\ominus = \frac{-15000}{298} \, \text{J K}^{-1} \]
Calculate \( \frac{-15000}{298} \):
\( 15000 \div 298 \approx 15000 \div 300 = 50 \).
More precisely:
\( 15000 / 298 \approx 50.
33557.
.
.
\)
So, \( \Delta S^\ominus \approx -50.
33557.
.
.
\, \text{J K}^{-1} \).
Rounding to two decimal places, \( \Delta S^\ominus \approx -50.
34 \, \text{J K}^{-1} \).
Option (2) is -50.
33.
This is very close.
The slight difference might be from using T=298.
15 K or rounding.
If T=298.
15 K:
\( \Delta S^\ominus = \frac{-15000}{298.
15} \approx -50.
309.
.
.
\, \text{J K}^{-1} \).
This is also very close to -50.
33.
The options suggest the calculation intended \(15000/298 \approx 50.
33\).