To solve the hypothesis test problem and determine the value of the test statistic, follow these steps:
1. Define the hypotheses:
\( H_0: \mu \leq 20 \) (null hypothesis)
\( H_1: \mu > 20 \) (alternative hypothesis)
2. Given data:
- Sample size: \( n = 81 \)
- Sample mean: \( \bar{x} = 20.55 \)
- Population standard deviation: \( \sigma = 3 \)
3. Use the formula for the z-test statistic:
\( z = \frac{\bar{x} - \mu_0}{\frac{\sigma}{\sqrt{n}}} \)
4. Substitute the values:
\( z = \frac{20.55 - 20}{\frac{3}{\sqrt{81}}} \)
5. Simplify:
- Denominator: \( \frac{3}{\sqrt{81}} = \frac{3}{9} = 0.33 \)
- Numerator: \( 20.55 - 20 = 0.55 \)
6. Calculate the test statistic:
\( z = \frac{0.55}{0.33} = 1.65 \)
\[
\boxed{\text{Test Statistic } z = 1.65}
\]