Consider the following C program:
The output of the above program is __________ . (Answer in integer)
Consider the following C program:
Consider the following C code segment:
The output of the given C code segment is __________. (Answer in integer)
Consider the following C program:
The unit interval \((0, 1)\) is divided at a point chosen uniformly distributed over \((0, 1)\) in \(\mathbb{R}\) into two disjoint subintervals. The expected length of the subinterval that contains 0.4 is ___________. (rounded off to two decimal places)
A quadratic polynomial \( (x - \alpha)(x - \beta) \) over complex numbers is said to be square invariant if \[ (x - \alpha)(x - \beta) = (x - \alpha^2)(x - \beta^2). \] Suppose from the set of all square invariant quadratic polynomials we choose one at random. The probability that the roots of the chosen polynomial are equal is ___________. (rounded off to one decimal place)
An application executes \( 6.4 \times 10^8 \) number of instructions in 6.3 seconds. There are four types of instructions, the details of which are given in the table. The duration of a clock cycle in nanoseconds is ____________. (rounded off to one decimal place)
Let \( \Sigma = \{1,2,3,4\} \). For \( x \in \Sigma^* \), let \( {prod}(x) \) be the product of symbols in \( x \) modulo 7. We take \( {prod}(\epsilon) = 1 \), where \( \epsilon \) is the null string. For example, \[ {prod}(124) = (1 \times 2 \times 4) \mod 7 = 1. \] Define \[ L = \{ x \in \Sigma^* \mid {prod}(x) = 2 \}. \] The number of states in a minimum state DFA for \( L \) is ___________. (Answer in integer)
Consider the following algorithm someAlgo that takes an undirected graph \( G \) as input.
someAlgo(G) Let \( v \) be any vertex in \( G \).
1. Run BFS on \( G \) starting at \( v \). Let \( u \) be a vertex in \( G \) at maximum distance from \( v \) as given by the BFS.
2. Run BFS on \( G \) again with \( u \) as the starting vertex. Let \( z \) be the vertex at maximum distance from \( u \) as given by the BFS. 3. Output the distance between \( u \) and \( z \) in \( G \).
The output of tt{someAlgo(T)} for the tree shown in the given figure is ____________ . (Answer in integer)