Consider the following C code segment:
The output of the given C code segment is __________. (Answer in integer)
The final value, \( 21 \), is the greatest common divisor of \( 126 \) and \( 105 \), as determined by the Euclidean algorithm.
Consider the following C program:
Consider the following C program:
The output of the above program is __________ . (Answer in integer)
Consider the following C program:
The unit interval \((0, 1)\) is divided at a point chosen uniformly distributed over \((0, 1)\) in \(\mathbb{R}\) into two disjoint subintervals. The expected length of the subinterval that contains 0.4 is ___________. (rounded off to two decimal places)
A quadratic polynomial \( (x - \alpha)(x - \beta) \) over complex numbers is said to be square invariant if \[ (x - \alpha)(x - \beta) = (x - \alpha^2)(x - \beta^2). \] Suppose from the set of all square invariant quadratic polynomials we choose one at random. The probability that the roots of the chosen polynomial are equal is ___________. (rounded off to one decimal place)
An application executes \( 6.4 \times 10^8 \) number of instructions in 6.3 seconds. There are four types of instructions, the details of which are given in the table. The duration of a clock cycle in nanoseconds is ____________. (rounded off to one decimal place)
Let \( \Sigma = \{1,2,3,4\} \). For \( x \in \Sigma^* \), let \( {prod}(x) \) be the product of symbols in \( x \) modulo 7. We take \( {prod}(\epsilon) = 1 \), where \( \epsilon \) is the null string. For example, \[ {prod}(124) = (1 \times 2 \times 4) \mod 7 = 1. \] Define \[ L = \{ x \in \Sigma^* \mid {prod}(x) = 2 \}. \] The number of states in a minimum state DFA for \( L \) is ___________. (Answer in integer)
Consider the following algorithm someAlgo that takes an undirected graph \( G \) as input.
someAlgo(G) Let \( v \) be any vertex in \( G \).
1. Run BFS on \( G \) starting at \( v \). Let \( u \) be a vertex in \( G \) at maximum distance from \( v \) as given by the BFS.
2. Run BFS on \( G \) again with \( u \) as the starting vertex. Let \( z \) be the vertex at maximum distance from \( u \) as given by the BFS. 3. Output the distance between \( u \) and \( z \) in \( G \).
The output of tt{someAlgo(T)} for the tree shown in the given figure is ____________ . (Answer in integer)