\[
r_{{max}} = \sqrt{140^2 + 35^2} = 144.31 \, {mm} \quad {(Radius of gyration)}
\]
\[
V_b = 70 \, {kN} \quad {(Longitudinal shear)}
\]
\[
M_b = 10 \, {kN.m} \quad {(Moment)}
\]
% Concept
Concept: The bolt value \( F_{{max}} \) is the maximum resultant shear force on the bolt.
Step 1: Direct shear force on bolt, \( F_1 \)
\[
F_1 = \frac{V_L}{n} = \frac{70}{6} = 11.67 \, {kN}.
\]
Step 2: Maximum torsional shear on bolt, \( F_2 \)
\[
F_2 = \frac{(T \cdot M)_{{max}}}{r_{{max}}} = \frac{10 \times 10^3 \times 144.31}{4 \times 144.31^2 + 2 \times 35^2} = 16.82 \, {kN}.
\]
Step 3: Minimum angle of inclination between \( F_1 \) and \( F_2 \), \( \theta \)
\[
\theta = \tan^{-1} \left( \frac{140}{35} \right) = 75.96^\circ.
\]
Step 4: Maximum resultant shear force on bolt, \( F_R \)
\[
F_R = \sqrt{F_1^2 + F_2^2 + 2F_1F_2 \cos\theta}
\]
\[
F_R = \sqrt{11.67^2 + 16.82^2 + 2 \times 11.67 \times 16.82 \times \cos75.96^\circ} = 22.67 \, {kN}.
\]
Thus, the minimum bolt value required is approximately \( \boxed{23} \, {kN} \) (rounded to the nearest integer).