Bolt Value: The bolt value \( F_{{max}} \) is the maximum resultant shear force on the bolt.
Using the formula:
\[ F_1 = \frac{V_L}{n} = \frac{70}{6} = 11.67 \, \text{kN} \]
Using the equation:
\[ F_2 = \frac{(T \cdot M)_{{max}}}{r_{{max}}} \]
Substituting values:
\[ F_2 = \frac{10 \times 10^3 \times 144.31}{4 \times 144.31^2 + 2 \times 35^2} = 16.82 \, \text{kN} \]
Using the formula:
\[ \theta = \tan^{-1} \left( \frac{140}{35} \right) \]
Solving:
\[ \theta = 75.96^\circ \]
Using the resultant force equation:
\[ F_R = \sqrt{F_1^2 + F_2^2 + 2F_1F_2 \cos\theta} \]
Substituting values:
\[ F_R = \sqrt{11.67^2 + 16.82^2 + 2 \times 11.67 \times 16.82 \times \cos75.96^\circ} \]
Solving:
\[ F_R = 22.67 \, \text{kN} \]
Minimum Bolt Value Required: \( \boxed{23} \, \text{kN} \) (rounded to the nearest integer).
With regard to the shear design of RCC beams, which of the following statements is/are TRUE?
Consider a five-digit number PQRST that has distinct digits P, Q, R, S, and T, and satisfies the following conditions:
1. \( P<Q \)
2. \( S>P>T \)
3. \( R<T \)
If integers 1 through 5 are used to construct such a number, the value of P is:


