Consider the block diagram in the figure with control input \( u \), disturbance \( d \), and output \( y \). For the feedforward controller, the ordered pair \( (K, \alpha / \beta) \) is:
\includegraphics[width=0.5\linewidth]{q22 CE.PNG}
Show Hint
For feedforward controller design, equate the product of the feedforward and disturbance transfer functions to the process transfer function for exact disturbance rejection.
Step 1: Analyze the block diagram.
The process transfer function is:
\[
G(s) = \frac{2}{(0.5s + 1)^2}.
\]
The disturbance transfer function is:
\[
G_d(s) = \frac{1}{(s + 1)^2}.
\]
The feedforward controller transfer function is:
\[
F(s) = K \left( \frac{\alpha s + 1}{\beta s + 1} \right)^2.
\]
Step 2: Apply disturbance rejection condition.
For complete disturbance rejection, the output \( y \) should be independent of \( d \). The feedforward controller \( F(s) \) must cancel the disturbance effect. This requires:
\[
F(s) \cdot G_d(s) = G(s).
\]
Substitute \( G(s) \) and \( G_d(s) \):
\[
K \left( \frac{\alpha s + 1}{\beta s + 1} \right)^2 \cdot \frac{1}{(s + 1)^2} = \frac{2}{(0.5s + 1)^2}.
\]
Step 3: Match the numerator and denominator.
Equating denominators:
\[
(\beta s + 1)^2 \cdot (s + 1)^2 = (0.5s + 1)^2.
\]
Expand and compare coefficients to solve for \( \beta \):
\[
\beta = 0.5.
\]
Equating numerators:
\[
K \cdot (\alpha s + 1)^2 = 2.
\]
Substitute \( \beta = 0.5 \) and solve for \( K \) and \( \alpha \):
\[
K = -0.5, \quad \alpha = 0.5.
\]
Step 4: Conclusion.
The ordered pair \( (K, \alpha / \beta) \) is \( (-0.5, 0.5) \).