Concept:
Mean \(= \dfrac{\text{Sum of observations}}{n}\)
Variance \(= \dfrac{1}{n}\sum (x_i - \bar{x})^2\)
Mean deviation about median:
\[
\text{MD}_{\text{median}} = \frac{1}{n}\sum |x_i - \text{Median}|
\]
Step 1: Using the given mean.
\[
\text{Mean} = 9 \Rightarrow \text{Sum of 10 observations} = 10 \times 9 = 90
\]
Sum of known observations:
\[
2+3+5+10+11+13+15+21 = 80
\]
\[
\Rightarrow a + b = 10 \quad \cdots (1)
\]
Step 2: Using the given variance.
\[
\text{Variance} = 34.2 \Rightarrow \sum (x_i - 9)^2 = 10 \times 34.2 = 342
\]
For known observations:
\[
\sum (x_i - 9)^2 = 302
\]
\[
\Rightarrow (a-9)^2 + (b-9)^2 = 342 - 302 = 40 \quad \cdots (2)
\]
Solving equations (1) and (2), we get:
\[
a = 3,\quad b = 7
\]
Step 3: Arrange the complete data in ascending order:
\[
2, 3, 3, 5, 7, 10, 11, 13, 15, 21
\]
Since \(n = 10\), the median is:
\[
\text{Median} = \frac{7 + 10}{2} = 8.5
\]
Step 4: Compute mean deviation about median.
\[
\sum |x_i - 8.5| = 50
\]
\[
\text{Mean Deviation} = \frac{50}{10} = 5
\]
\[
\Rightarrow \text{Mean deviation about median} = 5
\]