The probability \( P(Y \leq X) \) can be computed by integrating the joint probability density function over the appropriate region:
\[
P(Y \leq X) = \int_2^3 \int_1^x \frac{1}{(3-2)(4-1)} \, dy \, dx
\]
The joint probability density function is constant within the respective intervals. Simplifying the integral:
\[
P(Y \leq X) = \frac{1}{3} \int_2^3 (x - 1) \, dx
\]
Evaluating the integral:
\[
P(Y \leq X) = \frac{1}{3} \left[ \frac{(x - 1)^2}{2} \right]_2^3 = \frac{1}{3} \left[ \frac{1^2}{2} \right] = \frac{1}{6} \approx 0.17.
\]
Thus, \( P(Y \leq X) \approx 0.17 \).