Given:
\[
k = C T,\quad C = 2\ \text{W·m}^{-1}\text{·K}^{-2}
\]
Heat generation:
\[
\dot{q} = 1280\ \text{kW/m}^3 = 1.28\times10^6\ \text{W/m}^3
\]
Steady 1-D conduction with temperature-dependent $k$:
\[
\frac{d}{dx}\left( k \frac{dT}{dx} \right) + \dot{q} = 0
\]
Substitute $k = C T$:
\[
\frac{d}{dx}\left( C T \frac{dT}{dx} \right) + \dot{q} = 0
\]
Integrate once using symmetry at $x=0$ (\( dT/dx = 0 \)):
\[
C\, T\, \frac{dT}{dx} = -\dot{q} x
\]
Separate and integrate:
\[
T\, dT = -\frac{\dot{q}}{C} x\, dx
\]
\[
\frac{T^2}{2} = -\frac{\dot{q}}{2C} x^2 + \text{constant}
\]
At $x=0$, let the maximum temperature be $T_0$:
\[
\frac{T^2}{2} = \frac{T_0^2}{2} - \frac{\dot{q}}{2C} x^2
\]
At $x=L=1$ m, boundary condition $T=600$ K:
\[
600^2 = T_0^2 - \frac{\dot{q}}{C}L^2
\]
Substitute values:
\[
\frac{\dot{q}}{C} = \frac{1.28\times10^6}{2} = 640000
\]
\[
600^2 = T_0^2 - 640000
\]
\[
360000 = T_0^2 - 640000
\]
\[
T_0^2 = 1000000
\]
\[
T_0 = 1000\ \text{K}
\]
Thus,
\[
\boxed{1000\ \text{K}}
\]