Step 1: Define the reaction kinetics.
The reaction follows second-order kinetics:
\[
r_c = -kC^2
\]
where \( k \) is the reaction rate constant, and \( C \) is the concentration.
Step 2: Expression for reactor volumes.
1. Plug Flow Reactor (PFR):
For a second-order reaction in a PFR, the volume \( V_{\text{PFR}} \) is given by:
\[
V_{\text{PFR}} = \frac{1}{k} \left( \frac{1}{C_{\text{out}}} - \frac{1}{C_{\text{in}}} \right)
\]
2. Complete Mixed Reactor (CMR):
For a second-order reaction in a CMR, the volume \( V_{\text{CMR}} \) is given by:
\[
V_{\text{CMR}} = \frac{1}{k} \frac{1}{C_{\text{out}}} \left( C_{\text{in}} - C_{\text{out}} \right)
\]
Step 3: Substitute for 90\% reduction in concentration.
For both reactors:
\[
C_{\text{out}} = 0.1 \, C_{\text{in}}
\]
1. For \( V_{\text{PFR}} \):
\[
V_{\text{PFR}} = \frac{1}{k} \left( \frac{1}{0.1C_{\text{in}}} - \frac{1}{C_{\text{in}}} \right)
\]
Simplify:
\[
V_{\text{PFR}} = \frac{1}{k} \left( \frac{10}{C_{\text{in}}} - \frac{1}{C_{\text{in}}} \right) = \frac{1}{k} \frac{9}{C_{\text{in}}}
\]
2. For \( V_{\text{CMR}} \):
\[
V_{\text{CMR}} = \frac{1}{k} \frac{1}{0.1C_{\text{in}}} \left( C_{\text{in}} - 0.1C_{\text{in}} \right)
\]
Simplify:
\[
V_{\text{CMR}} = \frac{1}{k} \frac{1}{0.1C_{\text{in}}} \times 0.9C_{\text{in}} = \frac{1}{k} \frac{9}{0.1C_{\text{in}}} = \frac{1}{k} \frac{90}{C_{\text{in}}}
\]
Step 4: Ratio of volumes.
The ratio of \( V_{\text{CMR}} \) to \( V_{\text{PFR}} \) is:
\[
\frac{V_{\text{CMR}}}{V_{\text{PFR}}} = \frac{\frac{1}{k} \frac{90}{C_{\text{in}}}}{\frac{1}{k} \frac{9}{C_{\text{in}}}} = \frac{90}{9} = 10
\]