Consider moist air with absolute humidity of 0.02 (kg moisture)/(kg dry air) at 1 bar pressure. The vapor pressure of water is given by the equation: \[ \ln P_{{sat}} = 12 - \frac{4000}{T - 40} \] where \( P_{{sat}} \) is in bar and \( T \) is in K. The molecular weight of water and dry air are 18 kg/kmol and 29 kg/kmol, respectively. The dew temperature of the moist air is ____________ ℃ (rounded off to the nearest integer).
\[ \ln P_{\text{sat}} = 12 - \frac{4000}{T - 40} \]
Step 2: Calculate the partial pressure of the water vapor:\[ y_{H_2O} = \frac{\text{absolute humidity} \times 1000}{M_{\text{water}}} \times \frac{M_{\text{air}}}{1000} \] \[ y_{H_2O} = \frac{0.02 \times 1000}{18} \times \frac{29}{1000} = 0.0322 \]
The partial pressure of water vapor is:
\[ P_{H_2O} = y_{H_2O} \times P_{\text{total}} = 0.0322 \times 1 = 0.0322 \, \text{bar} \]
Step 3: Solve for the dew temperature \( T \):\[ P_{\text{sat}} = P_{H_2O} = 0.0322 \, \text{bar} \] \[ \ln 0.0322 = 12 - \frac{4000}{T - 40} \] \[ -3.442 = 12 - \frac{4000}{T - 40} \] \[ \frac{4000}{T - 40} = 15.442 \Rightarrow T - 40 = \frac{4000}{15.442} = 259.4 \Rightarrow T = 259.4 + 40 = 299.4 \, K \] \[ T_{\text{dew}} = 299.4 - 273.15 = 26.25^\circ C \]
Therefore, the dew temperature is approximately 26°C.

Match the List-I with List-II.
Choose the correct answer from the options given below:
The figures I, II, and III are parts of a sequence. Which one of the following options comes next in the sequence at IV?

A color model is shown in the figure with color codes: Yellow (Y), Magenta (M), Cyan (Cy), Red (R), Blue (Bl), Green (G), and Black (K). Which one of the following options displays the color codes that are consistent with the color model?

Consider a process with transfer function: \[ G_p = \frac{2e^{-s}}{(5s + 1)^2} \] A first-order plus dead time (FOPDT) model is to be fitted to the unit step process reaction curve (PRC) by applying the maximum slope method. Let \( \tau_m \) and \( \theta_m \) denote the time constant and dead time, respectively, of the fitted FOPDT model. The value of \( \frac{\tau_m}{\theta_m} \) is __________ (rounded off to 2 decimal places).
Given: For \( G = \frac{1}{(\tau s + 1)^2} \), the unit step output response is: \[ y(t) = 1 - \left(1 + \frac{t}{\tau}\right)e^{-t/\tau} \] The first and second derivatives of \( y(t) \) are: \[ \frac{dy(t)}{dt} = \frac{t}{\tau^2} e^{-t/\tau} \] \[ \frac{d^2y(t)}{dt^2} = \frac{1}{\tau^2} \left(1 - \frac{t}{\tau}\right) e^{-t/\tau} \]