Consider moist air with absolute humidity of 0.02 (kg moisture)/(kg dry air) at 1 bar pressure. The vapor pressure of water is given by the equation: \[ \ln P_{{sat}} = 12 - \frac{4000}{T - 40} \] where \( P_{{sat}} \) is in bar and \( T \) is in K. The molecular weight of water and dry air are 18 kg/kmol and 29 kg/kmol, respectively. The dew temperature of the moist air is ____________ ℃ (rounded off to the nearest integer).
\[ \ln P_{\text{sat}} = 12 - \frac{4000}{T - 40} \]
Step 2: Calculate the partial pressure of the water vapor:\[ y_{H_2O} = \frac{\text{absolute humidity} \times 1000}{M_{\text{water}}} \times \frac{M_{\text{air}}}{1000} \] \[ y_{H_2O} = \frac{0.02 \times 1000}{18} \times \frac{29}{1000} = 0.0322 \]
The partial pressure of water vapor is:
\[ P_{H_2O} = y_{H_2O} \times P_{\text{total}} = 0.0322 \times 1 = 0.0322 \, \text{bar} \]
Step 3: Solve for the dew temperature \( T \):\[ P_{\text{sat}} = P_{H_2O} = 0.0322 \, \text{bar} \] \[ \ln 0.0322 = 12 - \frac{4000}{T - 40} \] \[ -3.442 = 12 - \frac{4000}{T - 40} \] \[ \frac{4000}{T - 40} = 15.442 \Rightarrow T - 40 = \frac{4000}{15.442} = 259.4 \Rightarrow T = 259.4 + 40 = 299.4 \, K \] \[ T_{\text{dew}} = 299.4 - 273.15 = 26.25^\circ C \]
Therefore, the dew temperature is approximately 26°C.
A hot plate is placed in contact with a cold plate of a different thermal conductivity as shown in the figure. The initial temperature (at time $t = 0$) of the hot plate and cold plate are $T_h$ and $T_c$, respectively. Assume perfect contact between the plates. Which one of the following is an appropriate boundary condition at the surface $S$ for solving the unsteady state, one-dimensional heat conduction equations for the hot plate and cold plate for $t>0$?

The following data is given for a ternary \(ABC\) gas mixture at 12 MPa and 308 K:

\(y_i\): mole fraction of component \(i\) in the gas mixture
\(\hat{\phi}_i\): fugacity coefficient of component \(i\) in the gas mixture at 12 MPa and 308 K
The fugacity of the gas mixture is _________ MPa (rounded off to 3 decimal places).
The internal energy of air in $ 4 \, \text{m} \times 4 \, \text{m} \times 3 \, \text{m} $ sized room at 1 atmospheric pressure will be $ \times 10^6 \, \text{J} $. (Consider air as a diatomic molecule)
An electrical wire of 2 mm diameter and 5 m length is insulated with a plastic layer of thickness 2 mm and thermal conductivity \( k = 0.1 \) W/(m·K). It is exposed to ambient air at 30°C. For a current of 5 A, the potential drop across the wire is 2 V. The air-side heat transfer coefficient is 20 W/(m²·K). Neglecting the thermal resistance of the wire, the steady-state temperature at the wire-insulation interface __________°C (rounded off to 1 decimal place).

GIVEN:
Kinematic viscosity: \( \nu = 1.0 \times 10^{-6} \, {m}^2/{s} \)
Prandtl number: \( {Pr} = 7.01 \)
Velocity boundary layer thickness: \[ \delta_H = \frac{4.91 x}{\sqrt{x \nu}} \]
The first-order irreversible liquid phase reaction \(A \to B\) occurs inside a constant volume \(V\) isothermal CSTR with the initial steady-state conditions shown in the figure. The gain, in kmol/m³·h, of the transfer function relating the reactor effluent \(A\) concentration \(c_A\) to the inlet flow rate \(F\) is:
