The total derivative of temperature \( T \) with respect to time in a flow field is given by the material derivative:
\[
\frac{dT}{dt} = \frac{\partial T}{\partial t} + \vec{V} \cdot \nabla T
\]
Step 1: Compute partial derivatives of \( T \):
\[
T = x^2 + y t + 35 \Rightarrow \frac{\partial T}{\partial t} = y, \frac{\partial T}{\partial x} = 2x, \frac{\partial T}{\partial y} = t
\]
Step 2: Find \( \nabla T = \left( \frac{\partial T}{\partial x} \right) \vec{i} + \left( \frac{\partial T}{\partial y} \right) \vec{j} = (2x)\vec{i} + (t)\vec{j} \)
Step 3: At point \( (x, y, t) = (2, 3, 2) \):
\[
\frac{\partial T}{\partial t} = 3, \nabla T = 4\vec{i} + 2\vec{j}
\]
Step 4: Evaluate \( \vec{V} \) at (2, 3, 2):
\[
\vec{V} = (4 \cdot 2 \cdot 3)\vec{i} + (2 \cdot 2 - 2 \cdot 3^2)\vec{j} = 24\vec{i} + (4 - 18)\vec{j} = 24\vec{i} - 14\vec{j}
\]
Step 5: Compute dot product \( \vec{V} \cdot \nabla T \):
\[
(24\vec{i} - 14\vec{j}) \cdot (4\vec{i} + 2\vec{j}) = 24 \cdot 4 + (-14) \cdot 2 = 96 - 28 = 68
\]
Step 6: Compute total rate of change:
\[
\frac{dT}{dt} = \frac{\partial T}{\partial t} + \vec{V} \cdot \nabla T = 3 + 68 = 71
\]