A conducting square loop initially lies in the $ XZ $ plane with its lower edge hinged along the $ X $-axis. Only in the region $ y \geq 0 $, there is a time dependent magnetic field pointing along the $ Z $-direction, $ \vec{B}(t) = B_0 (\cos \omega t) \hat{k} $, where $ B_0 $ is a constant. The magnetic field is zero everywhere else. At time $ t = 0 $, the loop starts rotating with constant angular speed $ \omega $ about the $ X $ axis in the clockwise direction as viewed from the $ +X $ axis (as shown in the figure). Ignoring self-inductance of the loop and gravity, which of the following plots correctly represents the induced e.m.f. ($ V $) in the loop as a function of time:
A conducting square loop of side $ L $, mass $ M $, and resistance $ R $ is moving in the $ XY $ plane with its edges parallel to the $ X $ and $ Y $ axes. The region $ y \geq 0 $ has a uniform magnetic field, $ \vec{B} = B_0 \hat{k} $. The magnetic field is zero everywhere else. At time $ t = 0 $, the loop starts to enter the magnetic field with an initial velocity $ v_0 \hat{j} \, \text{m/s} $, as shown in the figure. Considering the quantity $ K = \frac{B_0^2 L^2}{RM} $ in appropriate units, ignoring self-inductance of the loop and gravity, which of the following statements is/are correct:
Two identical concave mirrors each of focal length $ f $ are facing each other as shown. A glass slab of thickness $ t $ and refractive index $ n_0 $ is placed equidistant from both mirrors on the principal axis. A monochromatic point source $ S $ is placed at the center of the slab. For the image to be formed on $ S $ itself, which of the following distances between the two mirrors is/are correct:
The major products obtained from the reactions in List-II are the reactants for the named reactions mentioned in List-I. Match each entry in List-I with the appropriate entry in List-II and choose the correct option.
Electromagnetic Induction is a current produced by the voltage production due to a changing magnetic field. This happens in one of the two conditions:-
The electromagnetic induction is mathematically represented as:-
e=N × d∅.dt
Where