Michaelis-Menten kinetics provides a framework for understanding how enzymatic reaction rates depend on substrate concentration.
Step 1: Low Substrate Concentration (\( S \ll K_M \)):
At low substrate concentrations, the reaction rate equation simplifies to \( V = \frac{V_{max} \times S}{K_M} \), indicating a first-order dependence on \( S \) because the rate is linearly proportional to \( S \).
Step 2: High Substrate Concentration (\( S \gg K_M \)):
When substrate concentrations are much higher than \( K_M \), the enzyme sites are nearly all saturated, making the rate approach \( V_{max} \) and becoming essentially independent of any additional increase in \( S \).
Step 3: Independence of \( K_M \) from Enzyme Concentration:
\( K_M \) is a characteristic of the enzyme-substrate affinity and is not dependent on the total concentration of the enzyme. It reflects the substrate concentration at which the reaction rate is half of \( V_{max} \) and remains constant for a given enzyme and substrate under specific conditions.
Methanol is produced by the reversible, gas-phase hydrogenation of carbon monoxide: \[ {CO} + 2{H}_2 \rightleftharpoons {CH}_3{OH} \] CO and H$_2$ are charged to a reactor, and the reaction proceeds to equilibrium at 453 K and 2 atm. The reaction equilibrium constant, which depends only on the temperature, is 1.68 at the reaction conditions. The mole fraction of H$_2$ in the product is 0.4. Assuming ideal gas behavior, the mole fraction of methanol in the product is ____________ (rounded off to 2 decimal places).
Choose the option that correctly matches the items in Group 1 with those in Group 2.

Which element of the 3d series has the lowest enthalpy of atomisation and why?
The residence-time distribution (RTD) function of a reactor (in min−1) is:
\[ E(t) = \begin{cases} 1 - 2t, & \text{if } t \leq 0.5\ \text{min} \\ 0, & \text{if } t > 0.5\ \text{min} \end{cases} \]
The mean residence time of the reactor is _____ min (rounded off to 2 decimal places).
A color model is shown in the figure with color codes: Yellow (Y), Magenta (M), Cyan (Cy), Red (R), Blue (Bl), Green (G), and Black (K). Which one of the following options displays the color codes that are consistent with the color model?

Consider a process with transfer function: \[ G_p = \frac{2e^{-s}}{(5s + 1)^2} \] A first-order plus dead time (FOPDT) model is to be fitted to the unit step process reaction curve (PRC) by applying the maximum slope method. Let \( \tau_m \) and \( \theta_m \) denote the time constant and dead time, respectively, of the fitted FOPDT model. The value of \( \frac{\tau_m}{\theta_m} \) is __________ (rounded off to 2 decimal places).
Given: For \( G = \frac{1}{(\tau s + 1)^2} \), the unit step output response is: \[ y(t) = 1 - \left(1 + \frac{t}{\tau}\right)e^{-t/\tau} \] The first and second derivatives of \( y(t) \) are: \[ \frac{dy(t)}{dt} = \frac{t}{\tau^2} e^{-t/\tau} \] \[ \frac{d^2y(t)}{dt^2} = \frac{1}{\tau^2} \left(1 - \frac{t}{\tau}\right) e^{-t/\tau} \]