- The presence of the non-linear function \( \cos(x(t)) \) makes the system non-linear.
- The system does not explicitly depend on time, making it time-invariant.
Conclusion: The correct answer is option (c).
Signals and their Fourier Transforms are given in the table below. Match LIST-I with LIST-II and choose the correct answer.
| LIST-I | LIST-II |
|---|---|
| A. \( e^{-at}u(t), a>0 \) | I. \( \pi[\delta(\omega - \omega_0) + \delta(\omega + \omega_0)] \) |
| B. \( \cos \omega_0 t \) | II. \( \frac{1}{j\omega + a} \) |
| C. \( \sin \omega_0 t \) | III. \( \frac{1}{(j\omega + a)^2} \) |
| D. \( te^{-at}u(t), a>0 \) | IV. \( -j\pi[\delta(\omega - \omega_0) - \delta(\omega + \omega_0)] \) |