Step 1: The probability depends on the number of available states and the magnetic moment associated with the spin. The system has three possible configurations, so the probability for each state is \( \frac{1}{3} \).
Step 2: The magnetic moment in the +z direction for the first spin is \( \frac{-1}{3} \mu \), resulting in the given configuration.
Thus, the correct answer is (A).
A system of two atoms can be in three quantum states having energies 0, $\epsilon$ and $2\epsilon$. The system is in equilibrium at temperature \( T = (k_B\beta)^{-1} \). Match the following Statistics with the Partition function.
Consider a single one-dimensional harmonic oscillator of angular frequency \( \omega \), in equilibrium at temperature \( T = \left( k_B \beta \right)^{-1 }\). The states of the harmonic oscillator are all non-degenerate having energy \( E_n = \left( n + \frac{1}{2} \right) \hbar \omega \) with equal probability, where \( n \) is the quantum number. The Helmholtz free energy of the oscillator is
The figure shows an opamp circuit with a 5.1 V Zener diode in the feedback loop. The opamp runs from \( \pm 15 \, {V} \) supplies. If a \( +1 \, {V} \) signal is applied at the input, the output voltage (rounded off to one decimal place) is:
A wheel of mass \( 4M \) and radius \( R \) is made of a thin uniform distribution of mass \( 3M \) at the rim and a point mass \( M \) at the center. The spokes of the wheel are massless. The center of mass of the wheel is connected to a horizontal massless rod of length \( 2R \), with one end fixed at \( O \), as shown in the figure. The wheel rolls without slipping on horizontal ground with angular speed \( \Omega \). If \( \vec{L} \) is the total angular momentum of the wheel about \( O \), then the magnitude \( \left| \frac{d\vec{L}}{dt} \right| = N(MR^2 \Omega^2) \). The value of \( N \) (in integer) is:
In the transistor circuit shown in the figure, \( V_{BE} = 0.7 \, {V} \) and \( \beta_{DC} = 400 \). The value of the base current in \( \mu A \) (rounded off to one decimal place) is: