We are given a system of two atoms in three quantum states with energies 0, \( \epsilon \), and \( 2\epsilon \). We need to match the partition function for different statistical distributions: Classical Distinguishable particles (CD), Classical Indistinguishable particles (CI), Fermi-Dirac (FD), and Bose-Einstein (BE).
Step 1: Partition Function for CD (Classical Distinguishable Particles)
For classical distinguishable particles, the partition function \( Z_1 \) is simply the sum over the Boltzmann factors of the states. The three states have energies \( 0 \), \( \epsilon \), and \( 2\epsilon \), so the partition function is:
\[
Z_1 = e^{-\beta 0} + e^{-\beta \epsilon} + e^{-\beta 2\epsilon} = 1 + e^{-\beta \epsilon} + e^{-2\beta \epsilon}.
\]
This corresponds to Option (C) for CD: Z3.
Step 2: Partition Function for CI (Classical Indistinguishable Particles)
For indistinguishable particles, the partition function includes a factor of 1 for the ground state and two terms for the excited states. The correct partition function is:
\[
Z_2 = 1 + e^{-\beta \epsilon} + 2e^{-2\beta \epsilon} + e^{-3\beta \epsilon} + e^{-4\beta \epsilon}.
\]
This matches with Option (C) for CI: Z4.
Step 3: Partition Function for FD (Fermi-Dirac)
For Fermi-Dirac statistics, we must account for the Pauli exclusion principle. The partition function is given by:
\[
Z_3 = 1 + 2e^{-\beta \epsilon} + 3e^{-2\beta \epsilon} + 2e^{-3\beta \epsilon} + e^{-4\beta \epsilon}.
\]
This matches with Option (C) for FD: Z1.
Step 4: Partition Function for BE (Bose-Einstein)
For Bose-Einstein statistics, the partition function includes fractional terms as multiple particles can occupy the same state. The partition function is:
\[
Z_4 = \frac{1}{2} e^{-\beta \epsilon} + \frac{3}{2} e^{-2\beta \epsilon} + e^{-3\beta \epsilon} + \frac{1}{2} e^{-4\beta \epsilon}.
\]
This matches with Option (C) for BE: Z2.
Thus, the correct match is:
- CD: Z3
- CI: Z4
- FD: Z1
- BE: Z2
Final Answer: (C)