A system of two atoms can be in three quantum states having energies 0, $\epsilon$ and $2\epsilon$. The system is in equilibrium at temperature \( T = (k_B\beta)^{-1} \). Match the following Statistics with the Partition function.
Consider a single one-dimensional harmonic oscillator of angular frequency \( \omega \), in equilibrium at temperature \( T = \left( k_B \beta \right)^{-1 }\). The states of the harmonic oscillator are all non-degenerate having energy \( E_n = \left( n + \frac{1}{2} \right) \hbar \omega \) with equal probability, where \( n \) is the quantum number. The Helmholtz free energy of the oscillator is
The figure shows an opamp circuit with a 5.1 V Zener diode in the feedback loop. The opamp runs from \( \pm 15 \, {V} \) supplies. If a \( +1 \, {V} \) signal is applied at the input, the output voltage (rounded off to one decimal place) is:
A wheel of mass \( 4M \) and radius \( R \) is made of a thin uniform distribution of mass \( 3M \) at the rim and a point mass \( M \) at the center. The spokes of the wheel are massless. The center of mass of the wheel is connected to a horizontal massless rod of length \( 2R \), with one end fixed at \( O \), as shown in the figure. The wheel rolls without slipping on horizontal ground with angular speed \( \Omega \). If \( \vec{L} \) is the total angular momentum of the wheel about \( O \), then the magnitude \( \left| \frac{d\vec{L}}{dt} \right| = N(MR^2 \Omega^2) \). The value of \( N \) (in integer) is:
In the transistor circuit shown in the figure, \( V_{BE} = 0.7 \, {V} \) and \( \beta_{DC} = 400 \). The value of the base current in \( \mu A \) (rounded off to one decimal place) is: