Consider a spherical galaxy of total mass \( M \) and radius \( R \), having a uniform matter distribution. In this idealized situation, the orbital speed \( v \) of a star of mass \( m \ll M \) as a function of the distance \( r \) from the galactic centre is best described by \[ (G \text{ is the universal gravitational constant}) \] 
F and G denote two points on a spacecraft’s orbit around a planet, as indicated in the figure. O is the center of the planet, P is the periapsis, and the angles are as indicated in the figure. If \( OF = 8000 \, {km} \), \( OG = 10000 \, {km} \), \( \theta_F = 0^\circ \), and \( \theta_G = 60^\circ \), the eccentricity of the spacecraft's orbit is __________ (rounded off to two decimal places).
F and G denote two points on a spacecraft’s orbit around a planet, as indicated in the figure. O is the center of the planet, P is the periapsis, and the angles are as indicated in the figure. If \( OF = 8000 \, {km} \), \( OG = 10000 \, {km} \), \( \theta_F = 0^\circ \), and \( \theta_G = 60^\circ \), the eccentricity of the spacecraft's orbit is ___________ (rounded off to two decimal places).

The figure shows an opamp circuit with a 5.1 V Zener diode in the feedback loop. The opamp runs from \( \pm 15 \, {V} \) supplies. If a \( +1 \, {V} \) signal is applied at the input, the output voltage (rounded off to one decimal place) is:
A wheel of mass \( 4M \) and radius \( R \) is made of a thin uniform distribution of mass \( 3M \) at the rim and a point mass \( M \) at the center. The spokes of the wheel are massless. The center of mass of the wheel is connected to a horizontal massless rod of length \( 2R \), with one end fixed at \( O \), as shown in the figure. The wheel rolls without slipping on horizontal ground with angular speed \( \Omega \). If \( \vec{L} \) is the total angular momentum of the wheel about \( O \), then the magnitude \( \left| \frac{d\vec{L}}{dt} \right| = N(MR^2 \Omega^2) \). The value of \( N \) (in integer) is:
In the transistor circuit shown in the figure, \( V_{BE} = 0.7 \, {V} \) and \( \beta_{DC} = 400 \). The value of the base current in \( \mu A \) (rounded off to one decimal place) is: