\[ f(a+1) + f(a+2) + \cdots + f(a+n) = 16(2^n - 1) \]
Let us assume:
\[ f(a+1) + f(a+2) + \cdots + f(a+n) = f(a)f(1) + f(a)f(2) + \cdots + f(a)f(n) \Rightarrow f(a)(f(1) + f(2) + \cdots + f(n)) = 16(2^n - 1) \]
\[ f(a)f(1) = 16(2^1 - 1) = 16 \Rightarrow f(a) \cdot f(1) = 16 \]
Assume \( f(1) = 2 \), then:
\[ f(a) = \frac{16}{2} = 8 \]
\[ f(1) + f(2) + \cdots + f(n) = \frac{16(2^n - 1)}{f(a)} = \frac{16(2^n - 1)}{8} = 2(2^n - 1) \]
Since \( f(3) = 8 = f(a) \Rightarrow a = 3 \)