Question:

Consider a driven damped mechanical oscillator is in resonance. Which of the following statements is true?

Updated On: Jan 18, 2023
  • Driving frequency is twice the natural frequency of the oscillator
  • Power transfer from the driving source to system is minimum
  • Driving frequency is the same as the natural frequency of the oscillator
  • The force damping the oscillations are at a minimum value
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is C

Solution and Explanation

Under the condition for resonance for a damped harmonic oscillator, the body oscillates with its own natural frequency $f_{0}$ with the help an external periodic force whose frequency $f_{d}$ (driving frequency) which is equal to the natural frequency of the body,
This means $ f_{0}=f_{d}$
Was this answer helpful?
0
0

Top Questions on simple harmonic motion

View More Questions

Concepts Used:

Simple Harmonic Motion

Simple Harmonic Motion is one of the most simple forms of oscillatory motion that occurs frequently in nature. The quantity of force acting on a particle in SHM is exactly proportional to the displacement of the particle from the equilibrium location. It is given by F = -kx, where k is the force constant and the negative sign indicates that force resists growth in x.

This force is known as the restoring force, and it pulls the particle back to its equilibrium position as opposing displacement increases. N/m is the SI unit of Force.

Types of Simple Harmonic Motion

Linear Simple Harmonic Motion:

When a particle moves to and fro about a fixed point (called equilibrium position) along with a straight line then its motion is called linear Simple Harmonic Motion. For Example spring-mass system

Conditions:

The restoring force or acceleration acting on the particle should always be proportional to the displacement of the particle and directed towards the equilibrium position.

  • – displacement of particle from equilibrium position.
  • – Restoring force
  • - acceleration

Angular Simple Harmonic Motion:

When a system oscillates angular long with respect to a fixed axis then its motion is called angular simple harmonic motion.

Conditions:

The restoring torque (or) Angular acceleration acting on the particle should always be proportional to the angular displacement of the particle and directed towards the equilibrium position.

Τ ∝ θ or α ∝ θ

Where,

  • Τ – Torque
  • α angular acceleration
  • θ – angular displacement