Since X is the independent variable and Y is the dependent variable, we need to find the regression equation of Y on X, which is given by
\[
Y_c = a + b_{yx}X.
\]
We first prepare a table to calculate the necessary sums:
\[
\begin{array}{|c|c|c|c|}
\hline
\mathbf{X} & \mathbf{Y} & \mathbf{X^2} & \mathbf{XY} \\
\hline
1 & 5 & 1 & 5 \\
2 & 7 & 4 & 14 \\
3 & 9 & 9 & 27 \\
4 & 11 & 16 & 44 \\
5 & 13 & 25 & 65 \\
\hline
\sum X = 15 & \sum Y = 45 & \sum X^2 = 55 & \sum XY = 155 \\
\hline
\end{array}
\]
Here, \(n = 5\).
First, we find the means:
\[
\bar{X} = \frac{\sum X}{n} = \frac{15}{5} = 3
\]
\[
\bar{Y} = \frac{\sum Y}{n} = \frac{45}{5} = 9
\]
Next, we calculate the regression coefficient \( b_{yx} \):
\[
b_{yx} = \frac{n\sum XY - (\sum X)(\sum Y)}{n\sum X^2 - (\sum X)^2}
= \frac{5(155) - (15)(45)}{5(55) - (15)^2}
= \frac{775 - 675}{275 - 225}
= \frac{100}{50} = 2
\]
Now, we calculate the constant \(a\):
\[
a = \bar{Y} - b_{yx}\bar{X} = 9 - (2)(3) = 9 - 6 = 3
\]
Therefore, the appropriate regression equation is:
\[
Y = 3 + 2X
\]