Step 1: Understanding the Concept:
The problem asks us to compare two ratios of side lengths in a triangle that has been divided into two right-angled triangles by an altitude. We can use trigonometric ratios or test different cases to determine the relationship.
Step 2: Key Formula or Approach:
In a right-angled triangle, the sine and cosine of an angle are defined as:
\(\sin(\theta) = \frac{\text{Opposite}}{\text{Hypotenuse}}\)
\(\cos(\theta) = \frac{\text{Adjacent}}{\text{Hypotenuse}}\)
Let's analyze the ratios in the two right-angled triangles, \(\triangle ADB\) and \(\triangle CDB\).
In right \(\triangle ADB\), with respect to angle A:
Column A: \(\frac{BD}{AB} = \frac{\text{Opposite side to A}}{\text{Hypotenuse}} = \sin(A)\).
In right \(\triangle CDB\), with respect to angle C:
Column B: \(\frac{DC}{BC} = \frac{\text{Adjacent side to C}}{\text{Hypotenuse}} = \cos(C)\).
So the problem is to compare \(\sin(A)\) and \(\cos(C)\).
Step 3: Detailed Explanation:
The problem provides no information about the angles A and C, or the side lengths of \(\triangle ABC\). Therefore, the relationship between \(\sin(A)\) and \(\cos(C)\) can vary. Let's test a few cases with specific triangles.
Case 1: Let \(\triangle ABC\) be an isosceles right triangle with \(\angle B = 90^{\circ}\) and \(AB = BC\).
In this case, the altitude BD from B to AC makes \(\angle A = \angle C = 45^{\circ}\).
\(\sin(A) = \sin(45^{\circ}) = \frac{\sqrt{2}}{2}\).
\(\cos(C) = \cos(45^{\circ}) = \frac{\sqrt{2}}{2}\).
In this scenario, Column A = Column B.
Case 2: Let \(\triangle ABC\) be a right triangle with \(\angle A = 30^{\circ}\) and \(\angle C = 60^{\circ}\).
\(\sin(A) = \sin(30^{\circ}) = \frac{1}{2}\).
\(\cos(C) = \cos(60^{\circ}) = \frac{1}{2}\).
In this scenario, Column A = Column B. (This occurs whenever A+C=90, since \(\sin(A) = \cos(90-A) = \cos(C)\)).
Case 3: Let's consider a non-right triangle. Let B=(0,3), D=(0,0).
Let A=(-4,0) and C=(1,0).
\(BD = 3\), \(AB = \sqrt{(-4-0)^2 + (0-3)^2} = \sqrt{16+9} = \sqrt{25} = 5\).
\(DC = 1\), \(BC = \sqrt{(1-0)^2 + (0-3)^2} = \sqrt{1+9} = \sqrt{10}\).
Column A: \(\frac{BD}{AB} = \frac{3}{5} = 0.6\).
Column B: \(\frac{DC}{BC} = \frac{1}{\sqrt{10}} \approx \frac{1}{3.16} \approx 0.316\).
In this scenario, Column A \textgreater Column B.
Case 4: Let's switch the base lengths. B=(0,3), D=(0,0).
Let A=(-1,0) and C=(4,0).
\(BD = 3\), \(AB = \sqrt{(-1-0)^2 + (0-3)^2} = \sqrt{1+9} = \sqrt{10}\).
\(DC = 4\), \(BC = \sqrt{(4-0)^2 + (0-3)^2} = \sqrt{16+9} = \sqrt{25} = 5\).
Column A: \(\frac{BD}{AB} = \frac{3}{\sqrt{10}} \approx \frac{3}{3.16} \approx 0.949\).
Column B: \(\frac{DC}{BC} = \frac{4}{5} = 0.8\).
In this scenario, Column A \textgreater Column B. Let's try to make B \textgreater A.
Case 5: Let B=(0,1), D=(0,0), A=(-10,0), C=(1,0).
\(BD = 1\), \(AB = \sqrt{(-10)^2 + 1^2} = \sqrt{101}\).
\(DC = 1\), \(BC = \sqrt{1^2 + 1^2} = \sqrt{2}\).
Column A: \(\frac{BD}{AB} = \frac{1}{\sqrt{101}} \approx 0.1\).
Column B: \(\frac{DC}{BC} = \frac{1}{\sqrt{2}} \approx 0.707\).
In this scenario, Column B \textgreater Column A.
Step 4: Final Answer:
Since we have found cases where A = B, A \textgreater B, and B \textgreater A, the relationship cannot be determined from the information given.