Choose the transfer function that best fits the output response to a unit step input change shown in the figure:
Step 1: Analyze the Transfer Function Configuration.
The presence of a zero and a time delay along with the squared second pole in this configuration provides a dynamic response that begins with a delayed start, quickly rises, overshoots, and then settles, matching the behavior observed in the response curve.
Step 2: Explain the Fitting Criteria.
The time delay (\(e^{-\theta s}\)) accounts for the initial pause before the response begins.
The zero (\(as + 1\)) enhances the system's response speed post-delay.
The squared pole term \((\tau_2 s + 1)^2\) introduces the necessary damping to control the overshoot and allows the system to settle at a new steady state efficiently.
A color model is shown in the figure with color codes: Yellow (Y), Magenta (M), Cyan (Cy), Red (R), Blue (Bl), Green (G), and Black (K). Which one of the following options displays the color codes that are consistent with the color model?
An object is said to have an n-fold rotational symmetry if the object, rotated by an angle of \( \frac{2\pi}{n} \), is identical to the original.
Which one of the following objects exhibits 4-fold rotational symmetry about an axis perpendicular to the plane of the screen?