Choose the transfer function that best fits the output response to a unit step input change shown in the figure:
Step 1: Analyze the Transfer Function Configuration.
The presence of a zero and a time delay along with the squared second pole in this configuration provides a dynamic response that begins with a delayed start, quickly rises, overshoots, and then settles, matching the behavior observed in the response curve.
Step 2: Explain the Fitting Criteria.
The time delay (\(e^{-\theta s}\)) accounts for the initial pause before the response begins.
The zero (\(as + 1\)) enhances the system's response speed post-delay.
The squared pole term \((\tau_2 s + 1)^2\) introduces the necessary damping to control the overshoot and allows the system to settle at a new steady state efficiently.
A controller \( D(s) \) of the form \( (1 + K_D s) \) is to be designed for the plant \[ G(s) = \frac{1000\sqrt{2}}{s(s+10)^2} \] as shown in the figure. The value of \( K_D \) that yields a phase margin of \(45^\circ\) at the gain cross-over frequency of 10 rad/sec is __________ (round off to one decimal place).
Consider a message signal \( m(t) \) which is bandlimited to \( [-W, W] \), where \( W \) is in Hz. Consider the following two modulation schemes for the message signal:
• Double sideband-suppressed carrier (DSB-SC): \[ f_{DSB}(t) = A_c m(t) \cos(2\pi f_c t) \] • Amplitude modulation (AM): \[ f_{AM}(t) = A_c \left( 1 + \mu m(t) \right) \cos(2\pi f_c t) \] Here, \( A_c \) and \( f_c \) are the amplitude and frequency (in Hz) of the carrier, respectively. In the case of AM, \( \mu \) denotes the modulation index. Consider the following statements:
(i) An envelope detector can be used for demodulation in the DSB-SC scheme if \( m(t)>0 \) for all \( t \).
(ii) An envelope detector can be used for demodulation in the AM scheme only if \( m(t)>0 \) for all \( t \).
Which of the following options is/are correct?
Consider the unity-negative-feedback system shown in Figure (i) below, where gain \( K \geq 0 \). The root locus of this system is shown in Figure (ii) below.
For what value(s) of \( K \) will the system in Figure (i) have a pole at \( -1 + j1 \)?
An object is said to have an n-fold rotational symmetry if the object, rotated by an angle of \( \frac{2\pi}{n} \), is identical to the original.
Which one of the following objects exhibits 4-fold rotational symmetry about an axis perpendicular to the plane of the screen?
A color model is shown in the figure with color codes: Yellow (Y), Magenta (M), Cyan (Cy), Red (R), Blue (Bl), Green (G), and Black (K). Which one of the following options displays the color codes that are consistent with the color model?
The figures I, II, and III are parts of a sequence. Which one of the following options comes next in the sequence at IV?