Choose the transfer function that best fits the output response to a unit step input change shown in the figure:

Step 1: Analyze the Transfer Function Configuration.
The presence of a zero and a time delay along with the squared second pole in this configuration provides a dynamic response that begins with a delayed start, quickly rises, overshoots, and then settles, matching the behavior observed in the response curve.
Step 2: Explain the Fitting Criteria.
The time delay (\(e^{-\theta s}\)) accounts for the initial pause before the response begins.
The zero (\(as + 1\)) enhances the system's response speed post-delay.
The squared pole term \((\tau_2 s + 1)^2\) introduces the necessary damping to control the overshoot and allows the system to settle at a new steady state efficiently.
The Block diagram for a control system is shown below:

Consider a process with transfer function: \[ G_p = \frac{2e^{-s}}{(5s + 1)^2} \] A first-order plus dead time (FOPDT) model is to be fitted to the unit step process reaction curve (PRC) by applying the maximum slope method. Let \( \tau_m \) and \( \theta_m \) denote the time constant and dead time, respectively, of the fitted FOPDT model. The value of \( \frac{\tau_m}{\theta_m} \) is __________ (rounded off to 2 decimal places).
Given: For \( G = \frac{1}{(\tau s + 1)^2} \), the unit step output response is: \[ y(t) = 1 - \left(1 + \frac{t}{\tau}\right)e^{-t/\tau} \] The first and second derivatives of \( y(t) \) are: \[ \frac{dy(t)}{dt} = \frac{t}{\tau^2} e^{-t/\tau} \] \[ \frac{d^2y(t)}{dt^2} = \frac{1}{\tau^2} \left(1 - \frac{t}{\tau}\right) e^{-t/\tau} \]
The figures I, II, and III are parts of a sequence. Which one of the following options comes next in the sequence at IV?

A color model is shown in the figure with color codes: Yellow (Y), Magenta (M), Cyan (Cy), Red (R), Blue (Bl), Green (G), and Black (K). Which one of the following options displays the color codes that are consistent with the color model?
