Choose the transfer function that best fits the output response to a unit step input change shown in the figure:

Step 1: Analyze the Transfer Function Configuration.
The presence of a zero and a time delay along with the squared second pole in this configuration provides a dynamic response that begins with a delayed start, quickly rises, overshoots, and then settles, matching the behavior observed in the response curve.
Step 2: Explain the Fitting Criteria.
The time delay (\(e^{-\theta s}\)) accounts for the initial pause before the response begins.
The zero (\(as + 1\)) enhances the system's response speed post-delay.
The squared pole term \((\tau_2 s + 1)^2\) introduces the necessary damping to control the overshoot and allows the system to settle at a new steady state efficiently.
The Block diagram for a control system is shown below:

Consider a process with transfer function: \[ G_p = \frac{2e^{-s}}{(5s + 1)^2} \] A first-order plus dead time (FOPDT) model is to be fitted to the unit step process reaction curve (PRC) by applying the maximum slope method. Let \( \tau_m \) and \( \theta_m \) denote the time constant and dead time, respectively, of the fitted FOPDT model. The value of \( \frac{\tau_m}{\theta_m} \) is __________ (rounded off to 2 decimal places).
Given: For \( G = \frac{1}{(\tau s + 1)^2} \), the unit step output response is: \[ y(t) = 1 - \left(1 + \frac{t}{\tau}\right)e^{-t/\tau} \] The first and second derivatives of \( y(t) \) are: \[ \frac{dy(t)}{dt} = \frac{t}{\tau^2} e^{-t/\tau} \] \[ \frac{d^2y(t)}{dt^2} = \frac{1}{\tau^2} \left(1 - \frac{t}{\tau}\right) e^{-t/\tau} \]
Methanol is produced by the reversible, gas-phase hydrogenation of carbon monoxide: \[ {CO} + 2{H}_2 \rightleftharpoons {CH}_3{OH} \] CO and H$_2$ are charged to a reactor, and the reaction proceeds to equilibrium at 453 K and 2 atm. The reaction equilibrium constant, which depends only on the temperature, is 1.68 at the reaction conditions. The mole fraction of H$_2$ in the product is 0.4. Assuming ideal gas behavior, the mole fraction of methanol in the product is ____________ (rounded off to 2 decimal places).