Step 1: Understand the Tanks-in-Series Model.
In the Tanks-in-Series model, each tank is modeled as a completely mixed reactor, and increasing the number of tanks \( n \) leads to a more plug-flow-like behavior, reducing the spread of the RTD.
Step 2: Analyze the Variance Trend.
As \( n \) increases, the variance of the residence time distribution (\( \sigma^2_\Theta \)) decreases due to the progressive narrowing of the RTD curve, reflecting less dispersion and more uniform residence times.
Methanol is produced by the reversible, gas-phase hydrogenation of carbon monoxide: \[ {CO} + 2{H}_2 \rightleftharpoons {CH}_3{OH} \] CO and H$_2$ are charged to a reactor, and the reaction proceeds to equilibrium at 453 K and 2 atm. The reaction equilibrium constant, which depends only on the temperature, is 1.68 at the reaction conditions. The mole fraction of H$_2$ in the product is 0.4. Assuming ideal gas behavior, the mole fraction of methanol in the product is ____________ (rounded off to 2 decimal places).
Choose the option that correctly matches the items in Group 1 with those in Group 2.

Which element of the 3d series has the lowest enthalpy of atomisation and why?
The residence-time distribution (RTD) function of a reactor (in min−1) is:
\[ E(t) = \begin{cases} 1 - 2t, & \text{if } t \leq 0.5\ \text{min} \\ 0, & \text{if } t > 0.5\ \text{min} \end{cases} \]
The mean residence time of the reactor is _____ min (rounded off to 2 decimal places).
The figures I, II, and III are parts of a sequence. Which one of the following options comes next in the sequence at IV?

A color model is shown in the figure with color codes: Yellow (Y), Magenta (M), Cyan (Cy), Red (R), Blue (Bl), Green (G), and Black (K). Which one of the following options displays the color codes that are consistent with the color model?

Consider a process with transfer function: \[ G_p = \frac{2e^{-s}}{(5s + 1)^2} \] A first-order plus dead time (FOPDT) model is to be fitted to the unit step process reaction curve (PRC) by applying the maximum slope method. Let \( \tau_m \) and \( \theta_m \) denote the time constant and dead time, respectively, of the fitted FOPDT model. The value of \( \frac{\tau_m}{\theta_m} \) is __________ (rounded off to 2 decimal places).
Given: For \( G = \frac{1}{(\tau s + 1)^2} \), the unit step output response is: \[ y(t) = 1 - \left(1 + \frac{t}{\tau}\right)e^{-t/\tau} \] The first and second derivatives of \( y(t) \) are: \[ \frac{dy(t)}{dt} = \frac{t}{\tau^2} e^{-t/\tau} \] \[ \frac{d^2y(t)}{dt^2} = \frac{1}{\tau^2} \left(1 - \frac{t}{\tau}\right) e^{-t/\tau} \]